deluge/libtorrent/include/asio/detail/kqueue_reactor.hpp
2009-04-19 21:40:09 +00:00

713 lines
22 KiB
C++

//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define ASIO_DETAIL_KQUEUE_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/push_options.hpp"
#include "asio/detail/kqueue_reactor_fwd.hpp"
#if defined(ASIO_HAS_KQUEUE)
#include "asio/detail/push_options.hpp"
#include <cstddef>
#include <vector>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/throw_exception.hpp>
#include "asio/detail/pop_options.hpp"
#include "asio/error.hpp"
#include "asio/io_service.hpp"
#include "asio/system_error.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/task_io_service.hpp"
#include "asio/detail/thread.hpp"
#include "asio/detail/reactor_op_queue.hpp"
#include "asio/detail/select_interrupter.hpp"
#include "asio/detail/service_base.hpp"
#include "asio/detail/signal_blocker.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/timer_queue.hpp"
// Older versions of Mac OS X may not define EV_OOBAND.
#if !defined(EV_OOBAND)
# define EV_OOBAND EV_FLAG1
#endif // !defined(EV_OOBAND)
namespace asio {
namespace detail {
template <bool Own_Thread>
class kqueue_reactor
: public asio::detail::service_base<kqueue_reactor<Own_Thread> >
{
public:
// Per-descriptor data.
struct per_descriptor_data
{
bool allow_speculative_read;
bool allow_speculative_write;
};
// Constructor.
kqueue_reactor(asio::io_service& io_service)
: asio::detail::service_base<
kqueue_reactor<Own_Thread> >(io_service),
mutex_(),
kqueue_fd_(do_kqueue_create()),
wait_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0),
shutdown_(false),
need_kqueue_wait_(true)
{
// Start the reactor's internal thread only if needed.
if (Own_Thread)
{
asio::detail::signal_blocker sb;
thread_ = new asio::detail::thread(
bind_handler(&kqueue_reactor::call_run_thread, this));
}
// Add the interrupter's descriptor to the kqueue.
struct kevent event;
EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD, 0, 0, 0);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
// Destructor.
~kqueue_reactor()
{
shutdown_service();
close(kqueue_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
stop_thread_ = true;
lock.unlock();
if (thread_)
{
interrupter_.interrupt();
thread_->join();
delete thread_;
thread_ = 0;
}
read_op_queue_.destroy_operations();
write_op_queue_.destroy_operations();
except_op_queue_.destroy_operations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task, but only if the reactor is not in its own thread.
void init_task()
{
if (!Own_Thread)
{
typedef task_io_service<kqueue_reactor<Own_Thread> > task_io_service_type;
use_service<task_io_service_type>(this->get_io_service()).init_task();
}
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type, per_descriptor_data& descriptor_data)
{
descriptor_data.allow_speculative_read = true;
descriptor_data.allow_speculative_write = true;
return 0;
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler,
bool allow_speculative_read = true)
{
if (allow_speculative_read && descriptor_data.allow_speculative_read)
{
asio::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative read in this function.
allow_speculative_read = false;
}
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_read)
need_kqueue_wait_ = true;
else if (!read_op_queue_.has_operation(descriptor))
{
// Speculative reads are ok as there are no queued read operations.
descriptor_data.allow_speculative_read = true;
asio::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative reads are not ok as there will be queued read operations.
descriptor_data.allow_speculative_read = false;
if (read_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler,
bool allow_speculative_write = true)
{
if (allow_speculative_write && descriptor_data.allow_speculative_write)
{
asio::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative write in this function.
allow_speculative_write = false;
}
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_write)
need_kqueue_wait_ = true;
else if (!write_op_queue_.has_operation(descriptor))
{
// Speculative writes are ok as there are no queued write operations.
descriptor_data.allow_speculative_write = true;
asio::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
if (read_op_queue_.has_operation(descriptor))
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_connect_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler)
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data&)
{
asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor, per_descriptor_data&)
{
asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from kqueue.
struct kevent event[2];
EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, event, 2, 0, 0, 0);
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
asio::detail::mutex::scoped_lock lock(mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
asio::detail::mutex::scoped_lock lock(mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (timer_queue.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
asio::detail::mutex::scoped_lock lock(mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0)
interrupter_.interrupt();
return n;
}
private:
friend class task_io_service<kqueue_reactor<Own_Thread> >;
// Run the kqueue loop.
void run(bool block)
{
asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->dispatch_cancellations();
// Check if the thread is supposed to stop.
if (stop_thread_)
{
complete_operations_and_timers(lock);
return;
}
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (!block && read_op_queue_.empty() && write_op_queue_.empty()
&& except_op_queue_.empty() && all_timer_queues_are_empty())
{
complete_operations_and_timers(lock);
return;
}
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;
wait_in_progress_ = true;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = (block || need_kqueue_wait_)
? kevent(kqueue_fd_, 0, 0, events, 128, timeout)
: 0;
lock.lock();
wait_in_progress_ = false;
// Block signals while performing operations.
asio::detail::signal_blocker sb;
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
if (descriptor == interrupter_.read_descriptor())
{
interrupter_.reset();
}
else if (events[i].filter == EVFILT_READ)
{
// Dispatch operations associated with the descriptor.
bool more_reads = false;
bool more_except = false;
if (events[i].flags & EV_ERROR)
{
asio::error_code error(
events[i].data, asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, error);
read_op_queue_.perform_all_operations(descriptor, error);
}
else if (events[i].flags & EV_OOBAND)
{
asio::error_code error;
more_except = except_op_queue_.perform_operation(descriptor, error);
if (events[i].data > 0)
more_reads = read_op_queue_.perform_operation(descriptor, error);
else
more_reads = read_op_queue_.has_operation(descriptor);
}
else
{
asio::error_code error;
more_reads = read_op_queue_.perform_operation(descriptor, error);
more_except = except_op_queue_.has_operation(descriptor);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_reads)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else if (more_except)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code error(errno,
asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, error);
read_op_queue_.perform_all_operations(descriptor, error);
}
}
else if (events[i].filter == EVFILT_WRITE)
{
// Dispatch operations associated with the descriptor.
bool more_writes = false;
if (events[i].flags & EV_ERROR)
{
asio::error_code error(
events[i].data, asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, error);
}
else
{
asio::error_code error;
more_writes = write_op_queue_.perform_operation(descriptor, error);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_writes)
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
asio::error_code error(errno,
asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, error);
}
}
}
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
timer_queues_[i]->dispatch_timers();
timer_queues_[i]->dispatch_cancellations();
}
// Issue any pending cancellations.
for (std::size_t i = 0; i < pending_cancellations_.size(); ++i)
cancel_ops_unlocked(pending_cancellations_[i]);
pending_cancellations_.clear();
// Determine whether kqueue needs to be called next time the reactor is run.
need_kqueue_wait_ = !read_op_queue_.empty()
|| !write_op_queue_.empty() || !except_op_queue_.empty();
complete_operations_and_timers(lock);
}
// Run the select loop in the thread.
void run_thread()
{
asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run(true);
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(kqueue_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// Create the kqueue file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_kqueue_create()
{
int fd = kqueue();
if (fd == -1)
{
boost::throw_exception(
asio::system_error(
asio::error_code(errno,
asio::error::get_system_category()),
"kqueue"));
}
return fd;
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the kevent call.
timespec* get_timeout(timespec& ts)
{
if (all_timer_queues_are_empty())
return 0;
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::minutes(5);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
ts.tv_sec = minimum_wait_duration.total_seconds();
ts.tv_nsec = minimum_wait_duration.total_nanoseconds() % 1000000000;
}
else
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
return &ts;
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the kqueue_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Clean up operations and timers. We must not hold the lock since the
// destructors may make calls back into this reactor. We make a copy of the
// vector of timer queues since the original may be modified while the lock
// is not held.
void complete_operations_and_timers(
asio::detail::mutex::scoped_lock& lock)
{
timer_queues_for_cleanup_ = timer_queues_;
lock.unlock();
read_op_queue_.complete_operations();
write_op_queue_.complete_operations();
except_op_queue_.complete_operations();
for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)
timer_queues_for_cleanup_[i]->complete_timers();
}
// Mutex to protect access to internal data.
asio::detail::mutex mutex_;
// The kqueue file descriptor.
int kqueue_fd_;
// Whether the kqueue wait call is currently in progress
bool wait_in_progress_;
// The interrupter is used to break a blocking kevent call.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of except operations.
reactor_op_queue<socket_type> except_op_queue_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when cleaning up timers. The copy is
// stored as a class data member to avoid unnecessary memory allocation.
std::vector<timer_queue_base*> timer_queues_for_cleanup_;
// The descriptors that are pending cancellation.
std::vector<socket_type> pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
asio::detail::thread* thread_;
// Whether the service has been shut down.
bool shutdown_;
// Whether we need to call kqueue the next time the reactor is run.
bool need_kqueue_wait_;
};
} // namespace detail
} // namespace asio
#endif // defined(ASIO_HAS_KQUEUE)
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_KQUEUE_REACTOR_HPP