// // select_reactor.hpp // ~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASIO_DETAIL_SELECT_REACTOR_HPP #define ASIO_DETAIL_SELECT_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include "asio/detail/push_options.hpp" #include "asio/detail/socket_types.hpp" // Must come before posix_time. #include "asio/detail/push_options.hpp" #include #include #include #include #include #include "asio/detail/pop_options.hpp" #include "asio/io_service.hpp" #include "asio/detail/bind_handler.hpp" #include "asio/detail/fd_set_adapter.hpp" #include "asio/detail/mutex.hpp" #include "asio/detail/noncopyable.hpp" #include "asio/detail/reactor_op_queue.hpp" #include "asio/detail/select_interrupter.hpp" #include "asio/detail/select_reactor_fwd.hpp" #include "asio/detail/service_base.hpp" #include "asio/detail/signal_blocker.hpp" #include "asio/detail/socket_ops.hpp" #include "asio/detail/socket_types.hpp" #include "asio/detail/task_io_service.hpp" #include "asio/detail/thread.hpp" #include "asio/detail/timer_queue.hpp" namespace asio { namespace detail { template class select_reactor : public asio::detail::service_base > { public: // Per-descriptor data. struct per_descriptor_data { }; // Constructor. select_reactor(asio::io_service& io_service) : asio::detail::service_base< select_reactor >(io_service), mutex_(), select_in_progress_(false), interrupter_(), read_op_queue_(), write_op_queue_(), except_op_queue_(), pending_cancellations_(), stop_thread_(false), thread_(0), shutdown_(false) { if (Own_Thread) { asio::detail::signal_blocker sb; thread_ = new asio::detail::thread( bind_handler(&select_reactor::call_run_thread, this)); } } // Destructor. ~select_reactor() { shutdown_service(); } // Destroy all user-defined handler objects owned by the service. void shutdown_service() { asio::detail::mutex::scoped_lock lock(mutex_); shutdown_ = true; stop_thread_ = true; lock.unlock(); if (thread_) { interrupter_.interrupt(); thread_->join(); delete thread_; thread_ = 0; } read_op_queue_.destroy_operations(); write_op_queue_.destroy_operations(); except_op_queue_.destroy_operations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) timer_queues_[i]->destroy_timers(); timer_queues_.clear(); } // Initialise the task, but only if the reactor is not in its own thread. void init_task() { if (!Own_Thread) { typedef task_io_service > task_io_service_type; use_service(this->get_io_service()).init_task(); } } // Register a socket with the reactor. Returns 0 on success, system error // code on failure. int register_descriptor(socket_type, per_descriptor_data&) { return 0; } // Start a new read operation. The handler object will be invoked when the // given descriptor is ready to be read, or an error has occurred. template void start_read_op(socket_type descriptor, per_descriptor_data&, Handler handler, bool /*allow_speculative_read*/ = true) { asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (read_op_queue_.enqueue_operation(descriptor, handler)) interrupter_.interrupt(); } // Start a new write operation. The handler object will be invoked when the // given descriptor is ready to be written, or an error has occurred. template void start_write_op(socket_type descriptor, per_descriptor_data&, Handler handler, bool /*allow_speculative_write*/ = true) { asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (write_op_queue_.enqueue_operation(descriptor, handler)) interrupter_.interrupt(); } // Start a new exception operation. The handler object will be invoked when // the given descriptor has exception information, or an error has occurred. template void start_except_op(socket_type descriptor, per_descriptor_data&, Handler handler) { asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (except_op_queue_.enqueue_operation(descriptor, handler)) interrupter_.interrupt(); } // Wrapper for connect handlers to enable the handler object to be placed // in both the write and the except operation queues, but ensure that only // one of the handlers is called. template class connect_handler_wrapper { public: connect_handler_wrapper(socket_type descriptor, boost::shared_ptr completed, select_reactor& reactor, Handler handler) : descriptor_(descriptor), completed_(completed), reactor_(reactor), handler_(handler) { } bool perform(asio::error_code& ec, std::size_t& bytes_transferred) { // Check whether one of the handlers has already been called. If it has, // then we don't want to do anything in this handler. if (*completed_) { completed_.reset(); // Indicate that this handler should not complete. return true; } // Cancel the other reactor operation for the connection. *completed_ = true; reactor_.enqueue_cancel_ops_unlocked(descriptor_); // Call the contained handler. return handler_.perform(ec, bytes_transferred); } void complete(const asio::error_code& ec, std::size_t bytes_transferred) { if (completed_.get()) handler_.complete(ec, bytes_transferred); } private: socket_type descriptor_; boost::shared_ptr completed_; select_reactor& reactor_; Handler handler_; }; // Start new write and exception operations. The handler object will be // invoked when the given descriptor is ready for writing or has exception // information available, or an error has occurred. The handler will be called // only once. template void start_connect_op(socket_type descriptor, per_descriptor_data&, Handler handler) { asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) { boost::shared_ptr completed(new bool(false)); connect_handler_wrapper wrapped_handler( descriptor, completed, *this, handler); bool interrupt = write_op_queue_.enqueue_operation( descriptor, wrapped_handler); interrupt = except_op_queue_.enqueue_operation( descriptor, wrapped_handler) || interrupt; if (interrupt) interrupter_.interrupt(); } } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type descriptor, per_descriptor_data&) { asio::detail::mutex::scoped_lock lock(mutex_); cancel_ops_unlocked(descriptor); } // Enqueue cancellation of all operations associated with the given // descriptor. The handlers associated with the descriptor will be invoked // with the operation_aborted error. This function does not acquire the // select_reactor's mutex, and so should only be used when the reactor lock is // already held. void enqueue_cancel_ops_unlocked(socket_type descriptor) { pending_cancellations_.push_back(descriptor); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor, per_descriptor_data&) { asio::detail::mutex::scoped_lock lock(mutex_); cancel_ops_unlocked(descriptor); } // Add a new timer queue to the reactor. template void add_timer_queue(timer_queue& timer_queue) { asio::detail::mutex::scoped_lock lock(mutex_); timer_queues_.push_back(&timer_queue); } // Remove a timer queue from the reactor. template void remove_timer_queue(timer_queue& timer_queue) { asio::detail::mutex::scoped_lock lock(mutex_); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { if (timer_queues_[i] == &timer_queue) { timer_queues_.erase(timer_queues_.begin() + i); return; } } } // Schedule a timer in the given timer queue to expire at the specified // absolute time. The handler object will be invoked when the timer expires. template void schedule_timer(timer_queue& timer_queue, const typename Time_Traits::time_type& time, Handler handler, void* token) { asio::detail::mutex::scoped_lock lock(mutex_); if (!shutdown_) if (timer_queue.enqueue_timer(time, handler, token)) interrupter_.interrupt(); } // Cancel the timer associated with the given token. Returns the number of // handlers that have been posted or dispatched. template std::size_t cancel_timer(timer_queue& timer_queue, void* token) { asio::detail::mutex::scoped_lock lock(mutex_); std::size_t n = timer_queue.cancel_timer(token); if (n > 0) interrupter_.interrupt(); return n; } private: friend class task_io_service >; // Run select once until interrupted or events are ready to be dispatched. void run(bool block) { asio::detail::mutex::scoped_lock lock(mutex_); // Dispatch any operation cancellations that were made while the select // loop was not running. read_op_queue_.perform_cancellations(); write_op_queue_.perform_cancellations(); except_op_queue_.perform_cancellations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) timer_queues_[i]->dispatch_cancellations(); // Check if the thread is supposed to stop. if (stop_thread_) { complete_operations_and_timers(lock); return; } // We can return immediately if there's no work to do and the reactor is // not supposed to block. if (!block && read_op_queue_.empty() && write_op_queue_.empty() && except_op_queue_.empty() && all_timer_queues_are_empty()) { complete_operations_and_timers(lock); return; } // Set up the descriptor sets. fd_set_adapter read_fds; read_fds.set(interrupter_.read_descriptor()); read_op_queue_.get_descriptors(read_fds); fd_set_adapter write_fds; write_op_queue_.get_descriptors(write_fds); fd_set_adapter except_fds; except_op_queue_.get_descriptors(except_fds); socket_type max_fd = read_fds.max_descriptor(); if (write_fds.max_descriptor() > max_fd) max_fd = write_fds.max_descriptor(); if (except_fds.max_descriptor() > max_fd) max_fd = except_fds.max_descriptor(); // Block on the select call without holding the lock so that new // operations can be started while the call is executing. timeval tv_buf = { 0, 0 }; timeval* tv = block ? get_timeout(tv_buf) : &tv_buf; select_in_progress_ = true; lock.unlock(); asio::error_code ec; int retval = socket_ops::select(static_cast(max_fd + 1), read_fds, write_fds, except_fds, tv, ec); lock.lock(); select_in_progress_ = false; // Block signals while dispatching operations. asio::detail::signal_blocker sb; // Reset the interrupter. if (retval > 0 && read_fds.is_set(interrupter_.read_descriptor())) interrupter_.reset(); // Dispatch all ready operations. if (retval > 0) { // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. except_op_queue_.perform_operations_for_descriptors( except_fds, asio::error_code()); read_op_queue_.perform_operations_for_descriptors( read_fds, asio::error_code()); write_op_queue_.perform_operations_for_descriptors( write_fds, asio::error_code()); except_op_queue_.perform_cancellations(); read_op_queue_.perform_cancellations(); write_op_queue_.perform_cancellations(); } for (std::size_t i = 0; i < timer_queues_.size(); ++i) { timer_queues_[i]->dispatch_timers(); timer_queues_[i]->dispatch_cancellations(); } // Issue any pending cancellations. for (size_t i = 0; i < pending_cancellations_.size(); ++i) cancel_ops_unlocked(pending_cancellations_[i]); pending_cancellations_.clear(); complete_operations_and_timers(lock); } // Run the select loop in the thread. void run_thread() { asio::detail::mutex::scoped_lock lock(mutex_); while (!stop_thread_) { lock.unlock(); run(true); lock.lock(); } } // Entry point for the select loop thread. static void call_run_thread(select_reactor* reactor) { reactor->run_thread(); } // Interrupt the select loop. void interrupt() { interrupter_.interrupt(); } // Check if all timer queues are empty. bool all_timer_queues_are_empty() const { for (std::size_t i = 0; i < timer_queues_.size(); ++i) if (!timer_queues_[i]->empty()) return false; return true; } // Get the timeout value for the select call. timeval* get_timeout(timeval& tv) { if (all_timer_queues_are_empty()) return 0; // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. boost::posix_time::time_duration minimum_wait_duration = boost::posix_time::minutes(5); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { boost::posix_time::time_duration wait_duration = timer_queues_[i]->wait_duration(); if (wait_duration < minimum_wait_duration) minimum_wait_duration = wait_duration; } if (minimum_wait_duration > boost::posix_time::time_duration()) { tv.tv_sec = minimum_wait_duration.total_seconds(); tv.tv_usec = minimum_wait_duration.total_microseconds() % 1000000; } else { tv.tv_sec = 0; tv.tv_usec = 0; } return &tv; } // Cancel all operations associated with the given descriptor. The do_cancel // function of the handler objects will be invoked. This function does not // acquire the select_reactor's mutex. void cancel_ops_unlocked(socket_type descriptor) { bool interrupt = read_op_queue_.cancel_operations(descriptor); interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt; interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt; if (interrupt) interrupter_.interrupt(); } // Clean up operations and timers. We must not hold the lock since the // destructors may make calls back into this reactor. We make a copy of the // vector of timer queues since the original may be modified while the lock // is not held. void complete_operations_and_timers( asio::detail::mutex::scoped_lock& lock) { timer_queues_for_cleanup_ = timer_queues_; lock.unlock(); read_op_queue_.complete_operations(); write_op_queue_.complete_operations(); except_op_queue_.complete_operations(); for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i) timer_queues_for_cleanup_[i]->complete_timers(); } // Mutex to protect access to internal data. asio::detail::mutex mutex_; // Whether the select loop is currently running or not. bool select_in_progress_; // The interrupter is used to break a blocking select call. select_interrupter interrupter_; // The queue of read operations. reactor_op_queue read_op_queue_; // The queue of write operations. reactor_op_queue write_op_queue_; // The queue of exception operations. reactor_op_queue except_op_queue_; // The timer queues. std::vector timer_queues_; // A copy of the timer queues, used when cleaning up timers. The copy is // stored as a class data member to avoid unnecessary memory allocation. std::vector timer_queues_for_cleanup_; // The descriptors that are pending cancellation. std::vector pending_cancellations_; // Does the reactor loop thread need to stop. bool stop_thread_; // The thread that is running the reactor loop. asio::detail::thread* thread_; // Whether the service has been shut down. bool shutdown_; }; } // namespace detail } // namespace asio #include "asio/detail/pop_options.hpp" #endif // ASIO_DETAIL_SELECT_REACTOR_HPP