das-research/DAS/simulator.py

136 lines
5.2 KiB
Python

#!/bin/python
import networkx as nx
import logging, random
from datetime import datetime
from DAS.tools import *
from DAS.results import *
from DAS.observer import *
from DAS.validator import *
class Simulator:
proposerID = 0
logLevel = logging.INFO
validators = []
glob = []
result = []
shape = []
logger = []
format = {}
def __init__(self, shape):
self.shape = shape
self.format = {"entity": "Simulator"}
self.result = Result(self.shape)
def initValidators(self):
self.glob = Observer(self.logger, self.shape)
self.glob.reset()
self.validators = []
rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
random.shuffle(rows)
random.shuffle(columns)
for i in range(self.shape.numberValidators):
val = Validator(i, int(not i!=0), self.logger, self.shape, rows, columns)
if i == self.proposerID:
val.initBlock()
self.glob.setGoldenData(val.block)
else:
val.logIDs()
self.validators.append(val)
def initNetwork(self):
self.shape.netDegree = 6
rowChannels = [[] for i in range(self.shape.blockSize)]
columnChannels = [[] for i in range(self.shape.blockSize)]
for v in self.validators:
for id in v.rowIDs:
rowChannels[id].append(v)
for id in v.columnIDs:
columnChannels[id].append(v)
for id in range(self.shape.blockSize):
if (len(rowChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(rowChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for row %d !" % id, extra=self.format)
for u, v in G.edges:
val1=rowChannels[id][u]
val2=rowChannels[id][v]
val1.rowNeighbors[id].append(val2)
val2.rowNeighbors[id].append(val1)
if (len(columnChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(columnChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for column %d !" % id, extra=self.format)
for u, v in G.edges:
val1=columnChannels[id][u]
val2=columnChannels[id][v]
val1.columnNeighbors[id].append(val2)
val2.columnNeighbors[id].append(val1)
def initLogger(self):
logger = logging.getLogger("DAS")
logger.setLevel(self.logLevel)
ch = logging.StreamHandler()
ch.setLevel(self.logLevel)
ch.setFormatter(CustomFormatter())
logger.addHandler(ch)
self.logger = logger
def resetShape(self, shape):
self.shape = shape
for val in self.validators:
val.shape.failureRate = shape.failureRate
val.shape.chi = shape.chi
def run(self):
self.glob.checkRowsColumns(self.validators)
self.validators[self.proposerID].broadcastBlock()
arrived, expected = self.glob.checkStatus(self.validators)
missingSamples = expected - arrived
missingVector = []
steps = 0
while(missingSamples > 0):
missingVector.append(missingSamples)
oldMissingSamples = missingSamples
for i in range(1,self.shape.numberValidators):
self.validators[i].receiveRowsColumns()
for i in range(1,self.shape.numberValidators):
self.validators[i].restoreRows()
self.validators[i].restoreColumns()
self.validators[i].sendRows()
self.validators[i].sendColumns()
self.validators[i].logRows()
self.validators[i].logColumns()
arrived, expected = self.glob.checkStatus(self.validators)
missingSamples = expected - arrived
missingRate = missingSamples*100/expected
self.logger.debug("step %d, missing %d of %d (%0.02f %%)" % (steps, missingSamples, expected, missingRate), extra=self.format)
if missingSamples == oldMissingSamples:
break
elif missingSamples == 0:
break
else:
steps += 1
self.result.addMissing(missingVector)
if missingSamples == 0:
self.result.blockAvailable = 1
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
return self.result
else:
self.result.blockAvailable = 0
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
return self.result