#!/bin/python import networkx as nx import logging, random from datetime import datetime from DAS.tools import * from DAS.results import * from DAS.observer import * from DAS.validator import * class Simulator: """This class implements the main DAS simulator.""" def __init__(self, shape): """It initializes the simulation with a set of parameters (shape).""" self.shape = shape self.format = {"entity": "Simulator"} self.result = Result(self.shape) self.validators = [] self.logger = [] self.logLevel = logging.INFO self.proposerID = 0 self.glob = [] def initValidators(self): """It initializes all the validators in the network.""" self.glob = Observer(self.logger, self.shape) self.glob.reset() self.validators = [] rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize) columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize) random.shuffle(rows) random.shuffle(columns) for i in range(self.shape.numberValidators): val = Validator(i, int(not i!=0), self.logger, self.shape, rows, columns) if i == self.proposerID: val.initBlock() self.glob.setGoldenData(val.block) else: val.logIDs() self.validators.append(val) def initNetwork(self): """It initializes the simulated network.""" self.shape.netDegree = 6 rowChannels = [[] for i in range(self.shape.blockSize)] columnChannels = [[] for i in range(self.shape.blockSize)] for v in self.validators: for id in v.rowIDs: rowChannels[id].append(v) for id in v.columnIDs: columnChannels[id].append(v) for id in range(self.shape.blockSize): # If the number of nodes in a channel is smaller or equal to the # requested degree, a fully connected graph is used. For n>d, a random # d-regular graph is set up. (For n=d+1, the two are the same.) if (len(rowChannels[id]) <= self.shape.netDegree): self.logger.debug("Graph fully connected with degree %d !" % (len(rowChannels[id]) - 1), extra=self.format) G = nx.complete_graph(len(rowChannels[id])) else: G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id])) if not nx.is_connected(G): self.logger.error("Graph not connected for row %d !" % id, extra=self.format) for u, v in G.edges: val1=rowChannels[id][u] val2=rowChannels[id][v] val1.rowNeighbors[id].update({val2.ID : Neighbor(val2, self.shape.blockSize)}) val2.rowNeighbors[id].update({val1.ID : Neighbor(val1, self.shape.blockSize)}) if (len(columnChannels[id]) <= self.shape.netDegree): self.logger.debug("Graph fully connected with degree %d !" % (len(columnChannels[id]) - 1), extra=self.format) G = nx.complete_graph(len(columnChannels[id])) else: G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id])) if not nx.is_connected(G): self.logger.error("Graph not connected for column %d !" % id, extra=self.format) for u, v in G.edges: val1=columnChannels[id][u] val2=columnChannels[id][v] val1.columnNeighbors[id].update({val2.ID : Neighbor(val2, self.shape.blockSize)}) val2.columnNeighbors[id].update({val1.ID : Neighbor(val1, self.shape.blockSize)}) if self.logger.isEnabledFor(logging.DEBUG): for i in range(0, self.shape.numberValidators): self.logger.debug("Val %d : rowN %s", i, self.validators[i].rowNeighbors, extra=self.format) self.logger.debug("Val %d : colN %s", i, self.validators[i].columnNeighbors, extra=self.format) def initLogger(self): """It initializes the logger.""" logger = logging.getLogger("DAS") logger.setLevel(self.logLevel) ch = logging.StreamHandler() ch.setLevel(self.logLevel) ch.setFormatter(CustomFormatter()) logger.addHandler(ch) self.logger = logger def resetShape(self, shape): """It resets the parameters of the simulation.""" self.shape = shape self.result = Result(self.shape) for val in self.validators: val.shape.failureRate = shape.failureRate val.shape.chi = shape.chi def run(self): """It runs the main simulation until the block is available or it gets stucked.""" self.glob.checkRowsColumns(self.validators) self.validators[self.proposerID].broadcastBlock() arrived, expected = self.glob.checkStatus(self.validators) missingSamples = expected - arrived missingVector = [] steps = 0 while(True): missingVector.append(missingSamples) oldMissingSamples = missingSamples self.logger.debug("PHASE SEND %d" % steps, extra=self.format) for i in range(0,self.shape.numberValidators): self.validators[i].sendRows() self.validators[i].sendColumns() self.logger.debug("PHASE RECEIVE %d" % steps, extra=self.format) for i in range(1,self.shape.numberValidators): self.validators[i].receiveRowsColumns() self.logger.debug("PHASE RESTORE %d" % steps, extra=self.format) for i in range(1,self.shape.numberValidators): self.validators[i].restoreRows() self.validators[i].restoreColumns() self.logger.debug("PHASE LOG %d" % steps, extra=self.format) for i in range(0,self.shape.numberValidators): self.validators[i].logRows() self.validators[i].logColumns() self.validators[i].updateStats() arrived, expected = self.glob.checkStatus(self.validators) missingSamples = expected - arrived missingRate = missingSamples*100/expected self.logger.debug("step %d, missing %d of %d (%0.02f %%)" % (steps, missingSamples, expected, missingRate), extra=self.format) if missingSamples == oldMissingSamples: self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format) missingVector.append(missingSamples) break elif missingSamples == 0: #self.logger.info("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format) missingVector.append(missingSamples) break else: steps += 1 self.result.populate(self.shape, missingVector) return self.result