#!/bin/python3 import numpy as np from DAS.block import * class Observer: """This class gathers global data from the simulation, like an 'all-seen god'.""" def __init__(self, logger, config): """It initializes the observer with a logger and given configuration.""" self.config = config self.format = {"entity": "Observer"} self.logger = logger self.block = [0] * self.config.nbCols * self.config.nbRows self.rows = [0] * self.config.nbRows self.columns = [0] * self.config.nbCols self.broadcasted = Block(self.config.nbCols, self.config.nbColsK, self.config.nbRows, self.config.nbRowsK) def checkRowsColumns(self, validators): """It checks how many validators have been assigned to each row and column.""" for val in validators: if val.amIproposer == 0: for r in val.rowIDs: self.rows[r] += 1 for c in val.columnIDs: self.columns[c] += 1 for i in range(self.config.nbRows): self.logger.debug("Row %d has %d validators assigned." % (i, self.rows[i]), extra=self.format) if self.rows[i] == 0: self.logger.warning("There is a row that has not been assigned", extra=self.format) for i in range(self.config.nbCols): self.logger.debug("Column %d has %d validators assigned." % (i, self.columns[i]), extra=self.format) if self.columns[i] == 0: self.logger.warning("There is a column that has not been assigned", extra=self.format) def checkBroadcasted(self): """It checks how many broadcasted samples are still missing in the network.""" zeros = 0 for i in range(self.nbCols * self.nbRows): if self.broadcasted.data[i] == 0: zeros += 1 if zeros > 0: self.logger.debug("There are %d missing samples in the network" % zeros, extra=self.format) return zeros def checkStatus(self, validators): """It checks the status of how many expected and arrived samples globally.""" arrived = 0 expected = 0 ready = 0 validatedall = 0 validated = 0 for val in validators: if val.amIproposer == 0: (a, e, v) = val.checkStatus() arrived += a expected += e if a == e: ready += 1 validatedall += val.vpn validated += v return (arrived, expected, ready, validatedall, validated) def getProgress(self, validators): """Calculate current simulation progress with different metrics. Returns: - missingSamples: overall number of sample instances missing in nodes. Sample are counted on both rows and columns, so intersections of interest are counted twice. - sampleProgress: previous expressed as progress ratio - nodeProgress: ratio of nodes having all segments interested in - validatorProgress: same as above, but vpn weighted average. I.e. it counts per validator, but counts a validator only if its support node's all validators see all interesting segments TODO: add real per validator progress counter """ arrived, expected, ready, validatedall, validated = self.checkStatus(validators) missingSamples = expected - arrived sampleProgress = arrived / expected nodeProgress = ready / (len(validators)-1) validatorCnt = sum([v.vpn for v in validators[1:]]) validatorAllProgress = validatedall / validatorCnt validatorProgress = validated / validatorCnt return missingSamples, sampleProgress, nodeProgress, validatorAllProgress, validatorProgress def getTrafficStats(self, validators): """Summary statistics of traffic measurements in a timestep.""" def maxOrNan(l): return np.max(l) if l else np.NaN def meanOrNan(l): return np.mean(l) if l else np.NaN trafficStats = {} for cl in range(0,3): Tx = [v.statsTxInSlot for v in validators if v.nodeClass == cl] Rx = [v.statsRxInSlot for v in validators if v.nodeClass == cl] RxDup = [v.statsRxDupInSlot for v in validators if v.nodeClass == cl] trafficStats[cl] = { "Tx": {"mean": meanOrNan(Tx), "max": maxOrNan(Tx)}, "Rx": {"mean": meanOrNan(Rx), "max": maxOrNan(Rx)}, "RxDup": {"mean": meanOrNan(RxDup), "max": maxOrNan(RxDup)}, } return trafficStats