#!/bin/python import networkx as nx import logging, random import pandas as pd from functools import partial, partialmethod from datetime import datetime from DAS.tools import * from DAS.results import * from DAS.observer import * from DAS.validator import * class Simulator: """This class implements the main DAS simulator.""" def __init__(self, shape, config, execID): """It initializes the simulation with a set of parameters (shape).""" self.shape = shape self.config = config self.format = {"entity": "Simulator"} self.execID = execID self.result = Result(self.shape, self.execID) self.validators = [] self.logger = [] self.logLevel = config.logLevel self.proposerID = 0 self.glob = [] self.execID = execID self.distR = [] self.distC = [] self.nodeRows = [] self.nodeColumns = [] # In GossipSub the initiator might push messages without participating in the mesh. # proposerPublishOnly regulates this behavior. If set to true, the proposer is not # part of the p2p distribution graph, only pushes segments to it. If false, the proposer # might get back segments from other peers since links are symmetric. self.proposerPublishOnly = True # If proposerPublishOnly == True, this regulates how many copies of each segment are # pushed out by the proposer. # 1: the data is sent out exactly once on rows and once on columns (2 copies in total) # self.shape.netDegree: default behavior similar (but not same) to previous code self.proposerPublishTo = self.shape.netDegree def initValidators(self): """It initializes all the validators in the network.""" self.glob = Observer(self.logger, self.shape) self.validators = [] if self.config.evenLineDistribution: lightNodes = int(self.shape.numberNodes * self.shape.class1ratio) heavyNodes = self.shape.numberNodes - lightNodes lightVal = lightNodes * self.shape.vpn1 heavyVal = heavyNodes * self.shape.vpn2 totalValidators = lightVal + heavyVal totalRows = totalValidators * self.shape.chi rows = list(range(self.shape.blockSize)) * (int(totalRows/self.shape.blockSize)+1) columns = list(range(self.shape.blockSize)) * (int(totalRows/self.shape.blockSize)+1) rows = rows[0:totalRows] columns = columns[0:totalRows] random.shuffle(rows) random.shuffle(columns) offset = lightVal*self.shape.chi self.logger.debug("There is a total of %d nodes, %d light and %d heavy." % (self.shape.numberNodes, lightNodes, heavyNodes), extra=self.format) self.logger.debug("There is a total of %d validators, %d in light nodes and %d in heavy nodes" % (totalValidators, lightVal, heavyVal), extra=self.format) self.logger.debug("Shuffling a total of %d rows/columns to be assigned (X=%d)" % (len(rows), self.shape.chi), extra=self.format) self.logger.debug("Shuffled rows: %s" % str(rows), extra=self.format) self.logger.debug("Shuffled columns: %s" % str(columns), extra=self.format) assignedRows = [] assignedCols = [] for i in range(self.shape.numberNodes): if self.config.evenLineDistribution: if i < int(lightVal/self.shape.vpn1): # First start with the light nodes start = i *self.shape.chi*self.shape.vpn1 end = (i+1)*self.shape.chi*self.shape.vpn1 else: j = i - int(lightVal/self.shape.vpn1) start = offset+( j *self.shape.chi*self.shape.vpn2) end = offset+((j+1)*self.shape.chi*self.shape.vpn2) r = rows[start:end] c = columns[start:end] val = Validator(i, int(not i!=0), self.logger, self.shape, r, c) self.logger.debug("Node %d has row IDs: %s" % (val.ID, val.rowIDs), extra=self.format) self.logger.debug("Node %d has column IDs: %s" % (val.ID, val.columnIDs), extra=self.format) assignedRows = assignedRows + list(r) assignedCols = assignedCols + list(c) self.nodeRows.append(val.rowIDs) self.nodeColumns.append(val.columnIDs) else: val = Validator(i, int(not i!=0), self.logger, self.shape) if i == self.proposerID: val.initBlock() else: val.logIDs() self.validators.append(val) assignedRows.sort() assignedCols.sort() self.logger.debug("Rows assigned: %s" % str(assignedRows), extra=self.format) self.logger.debug("Columns assigned: %s" % str(assignedCols), extra=self.format) self.logger.debug("Validators initialized.", extra=self.format) def initNetwork(self): """It initializes the simulated network.""" rowChannels = [[] for i in range(self.shape.blockSize)] columnChannels = [[] for i in range(self.shape.blockSize)] for v in self.validators: if not (self.proposerPublishOnly and v.amIproposer): for id in v.rowIDs: rowChannels[id].append(v) for id in v.columnIDs: columnChannels[id].append(v) # Check rows/columns distribution for r in rowChannels: self.distR.append(len(r)) for c in columnChannels: self.distC.append(len(c)) self.logger.debug("Number of validators per row; Min: %d, Max: %d" % (min(self.distR), max(self.distR)), extra=self.format) self.logger.debug("Number of validators per column; Min: %d, Max: %d" % (min(self.distC), max(self.distC)), extra=self.format) for id in range(self.shape.blockSize): # If the number of nodes in a channel is smaller or equal to the # requested degree, a fully connected graph is used. For n>d, a random # d-regular graph is set up. (For n=d+1, the two are the same.) if not rowChannels[id]: self.logger.error("No nodes for row %d !" % id, extra=self.format) continue elif (len(rowChannels[id]) <= self.shape.netDegree): self.logger.debug("Graph fully connected with degree %d !" % (len(rowChannels[id]) - 1), extra=self.format) G = nx.complete_graph(len(rowChannels[id])) else: G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id])) if not nx.is_connected(G): self.logger.error("Graph not connected for row %d !" % id, extra=self.format) for u, v in G.edges: val1=rowChannels[id][u] val2=rowChannels[id][v] val1.rowNeighbors[id].update({val2.ID : Neighbor(val2, 0, self.shape.blockSize)}) val2.rowNeighbors[id].update({val1.ID : Neighbor(val1, 0, self.shape.blockSize)}) if not columnChannels[id]: self.logger.error("No nodes for column %d !" % id, extra=self.format) continue elif (len(columnChannels[id]) <= self.shape.netDegree): self.logger.debug("Graph fully connected with degree %d !" % (len(columnChannels[id]) - 1), extra=self.format) G = nx.complete_graph(len(columnChannels[id])) else: G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id])) if not nx.is_connected(G): self.logger.error("Graph not connected for column %d !" % id, extra=self.format) for u, v in G.edges: val1=columnChannels[id][u] val2=columnChannels[id][v] val1.columnNeighbors[id].update({val2.ID : Neighbor(val2, 1, self.shape.blockSize)}) val2.columnNeighbors[id].update({val1.ID : Neighbor(val1, 1, self.shape.blockSize)}) for v in self.validators: if (self.proposerPublishOnly and v.amIproposer): for id in v.rowIDs: count = min(self.proposerPublishTo, len(rowChannels[id])) publishTo = random.sample(rowChannels[id], count) for vi in publishTo: v.rowNeighbors[id].update({vi.ID : Neighbor(vi, 0, self.shape.blockSize)}) for id in v.columnIDs: count = min(self.proposerPublishTo, len(columnChannels[id])) publishTo = random.sample(columnChannels[id], count) for vi in publishTo: v.columnNeighbors[id].update({vi.ID : Neighbor(vi, 1, self.shape.blockSize)}) if self.logger.isEnabledFor(logging.DEBUG): for i in range(0, self.shape.numberNodes): self.logger.debug("Val %d : rowN %s", i, self.validators[i].rowNeighbors, extra=self.format) self.logger.debug("Val %d : colN %s", i, self.validators[i].columnNeighbors, extra=self.format) def initLogger(self): """It initializes the logger.""" logging.TRACE = 5 logging.addLevelName(logging.TRACE, 'TRACE') logging.Logger.trace = partialmethod(logging.Logger.log, logging.TRACE) logging.trace = partial(logging.log, logging.TRACE) logger = logging.getLogger("DAS") if len(logger.handlers) == 0: logger.setLevel(self.logLevel) ch = logging.StreamHandler() ch.setLevel(self.logLevel) ch.setFormatter(CustomFormatter()) logger.addHandler(ch) self.logger = logger def printDiagnostics(self): """Print all required diagnostics to check when a block does not become available""" for val in self.validators: (a, e) = val.checkStatus() if e-a > 0 and val.ID != 0: self.logger.warning("Node %d is missing %d samples" % (val.ID, e-a), extra=self.format) for r in val.rowIDs: row = val.getRow(r) if row.count() < len(row): self.logger.debug("Row %d: %s" % (r, str(row)), extra=self.format) neiR = val.rowNeighbors[r] for nr in neiR: self.logger.debug("Row %d, Neighbor %d sent: %s" % (r, val.rowNeighbors[r][nr].node.ID, val.rowNeighbors[r][nr].received), extra=self.format) self.logger.debug("Row %d, Neighbor %d has: %s" % (r, val.rowNeighbors[r][nr].node.ID, self.validators[val.rowNeighbors[r][nr].node.ID].getRow(r)), extra=self.format) for c in val.columnIDs: col = val.getColumn(c) if col.count() < len(col): self.logger.debug("Column %d: %s" % (c, str(col)), extra=self.format) neiC = val.columnNeighbors[c] for nc in neiC: self.logger.debug("Column %d, Neighbor %d sent: %s" % (c, val.columnNeighbors[c][nc].node.ID, val.columnNeighbors[c][nc].received), extra=self.format) self.logger.debug("Column %d, Neighbor %d has: %s" % (c, val.columnNeighbors[c][nc].node.ID, self.validators[val.columnNeighbors[c][nc].node.ID].getColumn(c)), extra=self.format) def run(self): """It runs the main simulation until the block is available or it gets stucked.""" self.glob.checkRowsColumns(self.validators) arrived, expected, ready, validatedall, validated = self.glob.checkStatus(self.validators) missingSamples = expected - arrived missingVector = [] progressVector = [] trafficStatsVector = [] steps = 0 while(True): missingVector.append(missingSamples) oldMissingSamples = missingSamples self.logger.debug("PHASE SEND %d" % steps, extra=self.format) for i in range(0,self.shape.numberNodes): self.validators[i].send() self.logger.debug("PHASE RECEIVE %d" % steps, extra=self.format) for i in range(1,self.shape.numberNodes): self.validators[i].receiveRowsColumns() self.logger.debug("PHASE RESTORE %d" % steps, extra=self.format) for i in range(1,self.shape.numberNodes): self.validators[i].restoreRows() self.validators[i].restoreColumns() self.logger.debug("PHASE LOG %d" % steps, extra=self.format) for i in range(0,self.shape.numberNodes): self.validators[i].logRows() self.validators[i].logColumns() # log TX and RX statistics trafficStats = self.glob.getTrafficStats(self.validators) self.logger.debug("step %d: %s" % (steps, trafficStats), extra=self.format) for i in range(0,self.shape.numberNodes): self.validators[i].updateStats() trafficStatsVector.append(trafficStats) missingSamples, sampleProgress, nodeProgress, validatorAllProgress, validatorProgress = self.glob.getProgress(self.validators) self.logger.debug("step %d, arrived %0.02f %%, ready %0.02f %%, validatedall %0.02f %%, , validated %0.02f %%" % (steps, sampleProgress*100, nodeProgress*100, validatorAllProgress*100, validatorProgress*100), extra=self.format) cnS = "samples received" cnN = "nodes ready" cnV = "validators ready" cnT0 = "TX builder mean" cnT1 = "TX class1 mean" cnT2 = "TX class2 mean" cnR1 = "RX class1 mean" cnR2 = "RX class2 mean" cnD1 = "Dup class1 mean" cnD2 = "Dup class2 mean" progressVector.append({ cnS:sampleProgress, cnN:nodeProgress, cnV:validatorProgress, cnT0: trafficStats[0]["Tx"]["mean"], cnT1: trafficStats[1]["Tx"]["mean"], cnT2: trafficStats[2]["Tx"]["mean"], cnR1: trafficStats[1]["Rx"]["mean"], cnR2: trafficStats[2]["Rx"]["mean"], cnD1: trafficStats[1]["RxDup"]["mean"], cnD2: trafficStats[2]["RxDup"]["mean"], }) if missingSamples == oldMissingSamples: if len(missingVector) > self.config.steps4StopCondition: if missingSamples == missingVector[-self.config.steps4StopCondition]: self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format) if self.config.diagnostics: self.printDiagnostics() break missingVector.append(missingSamples) elif missingSamples == 0: self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format) missingVector.append(missingSamples) break steps += 1 progress = pd.DataFrame(progressVector) if self.config.saveRCdist: self.result.addMetric("rowDist", self.distR) self.result.addMetric("columnDist", self.distC) if self.config.saveProgress: self.result.addMetric("progress", progress.to_dict(orient='list')) self.result.populate(self.shape, self.config, missingVector) return self.result