2023-02-22 15:45:39 +00:00
#!/bin/python3
2023-02-23 13:37:45 +00:00
import os , sys
import time
import xml . etree . ElementTree as ET
import matplotlib . pyplot as plt
import numpy as np
import seaborn as sns
from itertools import combinations
2023-02-22 15:45:39 +00:00
class Visualizer :
def __init__ ( self , execID ) :
self . execID = execID
self . folderPath = " results/ " + self . execID
2023-03-13 14:03:55 +00:00
self . parameters = [ ' run ' , ' blockSize ' , ' failureRate ' , ' numberNodes ' , ' netDegree ' ,
2023-03-13 14:00:43 +00:00
' chi ' , ' vpn1 ' , ' vpn2 ' , ' bwUplinkProd ' , ' bwUplink1 ' , ' bwUplink2 ' ]
2023-02-26 17:36:02 +00:00
self . minimumDataPoints = 2
2023-02-22 15:45:39 +00:00
def plottingData ( self ) :
2023-02-26 17:36:02 +00:00
#Store data with a unique key for each params combination
2023-02-23 13:37:45 +00:00
data = { }
#Loop over the xml files in the folder
for filename in os . listdir ( self . folderPath ) :
#Loop over the xmls and store the data in variables
if filename . endswith ( ' .xml ' ) :
tree = ET . parse ( os . path . join ( self . folderPath , filename ) )
root = tree . getroot ( )
run = int ( root . find ( ' run ' ) . text )
blockSize = int ( root . find ( ' blockSize ' ) . text )
failureRate = int ( root . find ( ' failureRate ' ) . text )
2023-03-13 14:03:55 +00:00
numberNodes = int ( root . find ( ' numberNodes ' ) . text )
2023-02-23 13:37:45 +00:00
netDegree = int ( root . find ( ' netDegree ' ) . text )
2023-03-13 14:00:43 +00:00
chi = int ( root . find ( ' chi ' ) . text )
vpn1 = int ( root . find ( ' vpn1 ' ) . text )
vpn2 = int ( root . find ( ' vpn2 ' ) . text )
2023-03-07 13:36:13 +00:00
bwUplinkProd = int ( root . find ( ' bwUplinkProd ' ) . text )
bwUplink1 = int ( root . find ( ' bwUplink1 ' ) . text )
bwUplink2 = int ( root . find ( ' bwUplink2 ' ) . text )
2023-02-23 13:37:45 +00:00
tta = int ( root . find ( ' tta ' ) . text )
# Loop over all possible combinations of length 4 of the parameters
for combination in combinations ( self . parameters , 4 ) :
# Get the indices and values of the parameters in the combination
indices = [ self . parameters . index ( element ) for element in combination ]
2023-03-13 14:03:55 +00:00
selectedValues = [ run , blockSize , failureRate , numberNodes , netDegree , chi , vpn1 , vpn2 , bwUplinkProd , bwUplink1 , bwUplink2 ]
2023-02-23 13:37:45 +00:00
values = [ selectedValues [ index ] for index in indices ]
names = [ self . parameters [ i ] for i in indices ]
keyComponents = [ f " { name } _ { value } " for name , value in zip ( names , values ) ]
key = tuple ( keyComponents [ : 4 ] )
#Get the names of the other 2 parameters that are not included in the key
2023-03-07 13:36:13 +00:00
otherParams = [ self . parameters [ i ] for i in range ( len ( self . parameters ) ) if i not in indices ]
2023-02-23 13:37:45 +00:00
#Append the values of the other 2 parameters and the ttas to the lists for the key
otherIndices = [ i for i in range ( len ( self . parameters ) ) if i not in indices ]
#Initialize the dictionary for the key if it doesn't exist yet
if key not in data :
data [ key ] = { }
#Initialize lists for the other 2 parameters and the ttas with the key
data [ key ] [ otherParams [ 0 ] ] = [ ]
data [ key ] [ otherParams [ 1 ] ] = [ ]
data [ key ] [ ' ttas ' ] = [ ]
if otherParams [ 0 ] in data [ key ] :
data [ key ] [ otherParams [ 0 ] ] . append ( selectedValues [ otherIndices [ 0 ] ] )
else :
data [ key ] [ otherParams [ 0 ] ] = [ selectedValues [ otherIndices [ 0 ] ] ]
if otherParams [ 1 ] in data [ key ] :
data [ key ] [ otherParams [ 1 ] ] . append ( selectedValues [ otherIndices [ 1 ] ] )
else :
data [ key ] [ otherParams [ 1 ] ] = [ selectedValues [ otherIndices [ 1 ] ] ]
data [ key ] [ ' ttas ' ] . append ( tta )
2023-02-22 15:45:39 +00:00
print ( " Getting data from the folder... " )
return data
def similarKeys ( self , data ) :
2023-02-26 17:36:02 +00:00
#Get the keys for all data with the same x and y labels
2023-02-23 13:37:45 +00:00
filteredKeys = { }
for key1 , value1 in data . items ( ) :
subKeys1 = list ( value1 . keys ( ) )
filteredKeys [ ( subKeys1 [ 0 ] , subKeys1 [ 1 ] ) ] = [ key1 ]
for key2 , value2 in data . items ( ) :
subKeys2 = list ( value2 . keys ( ) )
if key1 != key2 and subKeys1 [ 0 ] == subKeys2 [ 0 ] and subKeys1 [ 1 ] == subKeys2 [ 1 ] :
try :
filteredKeys [ ( subKeys1 [ 0 ] , subKeys1 [ 1 ] ) ] . append ( key2 )
except KeyError :
filteredKeys [ ( subKeys1 [ 0 ] , subKeys1 [ 1 ] ) ] = [ key2 ]
2023-02-22 15:45:39 +00:00
print ( " Getting filtered keys from data... " )
return filteredKeys
2023-02-26 17:36:02 +00:00
def formatLabel ( self , label ) :
#Label formatting for the figures
result = ' ' . join ( [ f " { char } " if char . isupper ( ) else char for char in label ] )
return result . title ( )
2023-02-23 13:37:45 +00:00
def formatTitle ( self , key ) :
2023-02-26 17:36:02 +00:00
#Title formatting for the figures
2023-02-23 13:37:45 +00:00
name = ' ' . join ( [ f " { char } " if char . isupper ( ) else char for char in key . split ( ' _ ' ) [ 0 ] ] )
number = key . split ( ' _ ' ) [ 1 ]
return f " { name . title ( ) } : { number } "
2023-02-22 15:45:39 +00:00
def plotHeatmaps ( self ) :
2023-02-26 17:36:02 +00:00
#Plot and store the 2D heatmaps in subfolders
2023-02-22 15:45:39 +00:00
data = self . plottingData ( )
filteredKeys = self . similarKeys ( data )
print ( " Plotting heatmaps... " )
2023-02-23 13:37:45 +00:00
#Create the directory if it doesn't exist already
heatmapsFolder = self . folderPath + ' /heatmaps '
if not os . path . exists ( heatmapsFolder ) :
os . makedirs ( heatmapsFolder )
#Plot
for labels , keys in filteredKeys . items ( ) :
for key in keys :
xlabels = np . sort ( np . unique ( data [ key ] [ labels [ 0 ] ] ) )
ylabels = np . sort ( np . unique ( data [ key ] [ labels [ 1 ] ] ) )
2023-02-26 17:36:02 +00:00
if len ( xlabels ) < self . minimumDataPoints or len ( ylabels ) < self . minimumDataPoints :
continue
2023-02-23 13:37:45 +00:00
hist , xedges , yedges = np . histogram2d ( data [ key ] [ labels [ 0 ] ] , data [ key ] [ labels [ 1 ] ] , bins = ( len ( xlabels ) , len ( ylabels ) ) , weights = data [ key ] [ ' ttas ' ] )
hist = hist . T
fig , ax = plt . subplots ( figsize = ( 10 , 6 ) )
sns . heatmap ( hist , xticklabels = xlabels , yticklabels = ylabels , cmap = ' Purples ' , cbar_kws = { ' label ' : ' Time to block availability ' } , linecolor = ' black ' , linewidths = 0.3 , annot = True , fmt = " .2f " , ax = ax )
2023-02-26 17:36:02 +00:00
plt . xlabel ( self . formatLabel ( labels [ 0 ] ) )
plt . ylabel ( self . formatLabel ( labels [ 1 ] ) )
2023-02-23 13:37:45 +00:00
filename = " "
title = " "
paramValueCnt = 0
for param in self . parameters :
if param != labels [ 0 ] and param != labels [ 1 ] :
filename + = f " { key [ paramValueCnt ] } "
formattedTitle = self . formatTitle ( key [ paramValueCnt ] )
title + = formattedTitle
paramValueCnt + = 1
title_obj = plt . title ( title )
font_size = 16 * fig . get_size_inches ( ) [ 0 ] / 10
title_obj . set_fontsize ( font_size )
filename = filename + " .png "
targetFolder = os . path . join ( heatmapsFolder , f " { labels [ 0 ] } Vs { labels [ 1 ] } " )
if not os . path . exists ( targetFolder ) :
os . makedirs ( targetFolder )
plt . savefig ( os . path . join ( targetFolder , filename ) )
plt . close ( )
plt . clf ( )