constantine/tests/t_finite_fields_sqrt.nim
Mamy Ratsimbazafy ec76ac5ea6
Fuzzing campaign fixes (#58)
* Add test case for #30 - Euler's criterion doesn't return 1 for a square

* Detect #42 in the test suite

* Detect #43 in the test suite

* comment in sqrt tests

* Add #67 to the anti-regression suite

* Add #61 to the anti-regression suite

* Add #62 to anti-regression suite

* Add #60 to the anti-regression suite

* Add #64 to the test suite

* Add #65 - case 1

* Add #65 case 2

* Add #65 case 3

* Add debug check to isSquare/Euler's Criterion/Legendre Symbol

* Make sure our primitives are correct

* For now deactivate montySquare CIOS fix #61 #62

* Narrow down #42 and #43 to powinv on 32-bit

* Detect #42 #43 at the fast squaring level

* More #42, #43 tests, Use multiplication instead of squaring as a temporary workaround, see https://github.com/mratsim/constantine/issues/68

* Prevent regression of #67 now that squaring is "fixed"
2020-06-23 01:27:40 +02:00

168 lines
5.1 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/[tables, unittest, times],
# Internal
../constantine/[arithmetic, primitives],
../constantine/io/[io_fields],
../constantine/config/[curves, common],
# Test utilities
../helpers/prng_unsafe
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_finite_fields_sqrt xoshiro512** seed: ", seed
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc exhaustiveCheck_p3mod4(C: static Curve, modulus: static int) =
test "Exhaustive square root check for p ≡ 3 (mod 4) on " & $Curve(C):
var squares_to_roots: Table[uint16, set[uint16]]
# Create all squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
a.square()
var r_bytes: array[8, byte]
r_bytes.exportRawUint(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i)
# From Euler's criterion
# there is exactly (p-1)/2 squares in 𝔽p* (without 0)
# and so (p-1)/2 + 1 in 𝔽p (with 0)
check: squares_to_roots.len == (modulus-1) div 2 + 1
# Check squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
if i in squares_to_roots:
var a2 = a
check:
bool a.isSquare()
bool a.sqrt_if_square()
# 2 different code paths have the same result
# (despite 2 square roots existing per square)
a2.sqrt()
check: bool(a == a2)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
# r is one of the 2 square roots of `i`
check: r in squares_to_roots[i]
else:
let a2 = a
check:
bool not a.isSquare()
bool not a.sqrt_if_square()
bool (a == a2) # a shouldn't be modified
template testImpl(a: untyped): untyped {.dirty.} =
var na{.noInit.}: typeof(a)
na.neg(a)
var a2 = a
var na2 = na
a2.square()
na2.square()
check:
bool a2 == na2
bool a2.isSquare()
var r, s = a2
r.sqrt()
let ok = s.sqrt_if_square()
check:
bool ok
bool(r == s)
bool(r == a or r == na)
proc randomSqrtCheck_p3mod4(C: static Curve) =
test "Random square root check for p ≡ 3 (mod 4) on " & $Curve(C):
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp[C])
testImpl(a)
for _ in 0 ..< Iters:
let a = rng.randomHighHammingWeight(Fp[C])
testImpl(a)
for _ in 0 ..< Iters:
let a = rng.random_long01Seq(Fp[C])
testImpl(a)
proc main() =
suite "Modular square root" & " [" & $WordBitwidth & "-bit mode]":
exhaustiveCheck_p3mod4 Fake103, 103
exhaustiveCheck_p3mod4 Fake10007, 10007
exhaustiveCheck_p3mod4 Fake65519, 65519
randomSqrtCheck_p3mod4 Mersenne61
randomSqrtCheck_p3mod4 Mersenne127
randomSqrtCheck_p3mod4 BN254_Nogami
randomSqrtCheck_p3mod4 BN254_Snarks
randomSqrtCheck_p3mod4 P256
randomSqrtCheck_p3mod4 Secp256k1
randomSqrtCheck_p3mod4 BLS12_381
randomSqrtCheck_p3mod4 BN446
randomSqrtCheck_p3mod4 FKM12_447
randomSqrtCheck_p3mod4 BLS12_461
randomSqrtCheck_p3mod4 BN462
suite "Modular square root - 32-bit bugs highlighted by property-based testing " & " [" & $WordBitwidth & "-bit mode]":
test "FKM12_447 - #30":
var a: Fp[FKM12_447]
a.fromHex"0x406e5e74ee09c84fa0c59f2db3ac814a4937e2f57ecd3c0af4265e04598d643c5b772a6549a2d9b825445c34b8ba100fe8d912e61cfda43d"
a.square()
check: bool a.isSquare()
test "Fused modular square root on 32-bit - inconsistent with isSquare - #42":
var a: Fp[BLS12_381]
a.fromHex"0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51"
check:
bool(not a.isSquare())
bool(not a.sqrt_if_square())
test "Fused modular square root on 32-bit - inconsistent with isSquare - #43":
var a: Fp[BLS12_381]
a.fromHex"0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3"
check:
bool(not a.isSquare())
bool(not a.sqrt_if_square())
test "Fp[2^127 - 1] - #61":
var a: Fp[Mersenne127]
a.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
testImpl(a)
test "Fp[2^127 - 1] - #62":
var a: Fp[Mersenne127]
a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
testImpl(a)
main()