constantine/sage/derive_square_root.sage
Mamy Ratsimbazafy ffacf61e8a
Don't dump all in "backend" (#184)
* backend -> math

* towers -> extension fields

* move ISA and compiler specific code out of math/

* fix export
2022-02-27 01:49:08 +01:00

149 lines
4.1 KiB
Python

#!/usr/bin/sage
# vim: syntax=python
# vim: set ts=2 sw=2 et:
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Frobenius constants
#
# ############################################################
# Imports
# ---------------------------------------------------------
import os
import inspect, textwrap
# Working directory
# ---------------------------------------------------------
os.chdir(os.path.dirname(__file__))
# Sage imports
# ---------------------------------------------------------
# Accelerate arithmetic by accepting probabilistic proofs
from sage.structure.proof.all import arithmetic
arithmetic(False)
load('curves.sage')
# Utilities
# ---------------------------------------------------------
def fp2_to_hex(a):
v = vector(a)
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
def field_to_nim(value, field, curve, prefix = "", comment_above = "", comment_right = ""):
result = '# ' + comment_above + '\n' if comment_above else ''
comment_right = ' # ' + comment_right if comment_right else ''
if field == 'Fp2':
v = vector(value)
result += inspect.cleandoc(f"""
{prefix}Fp2[{curve}].fromHex( {comment_right}
"0x{Integer(v[0]).hex()}",
"0x{Integer(v[1]).hex()}"
)""")
elif field == 'Fp':
result += inspect.cleandoc(f"""
{prefix}Fp[{curve}].fromHex( {comment_right}
"0x{Integer(value).hex()}")
""")
else:
raise NotImplementedError()
return result
# Code generators
# ---------------------------------------------------------
def genSqrtFp2Constants(curve_name, curve_config):
embdeg = curve_config[curve_name]['tower']['embedding_degree']
twdeg = curve_config[curve_name]['tower']['twist_degree']
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
p = curve_config[curve_name]['field']['modulus']
Fp = GF(p)
K.<u> = PolynomialRing(Fp)
if g2field == 'Fp2':
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
else:
SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
sqrt_QNR = Fp2([0, 1])
sqrt_sqrt_QNR = sqrt_QNR.sqrt()
sqrt_minus_sqrt_QNR = (-sqrt_QNR).sqrt()
print('\n----> Square root on Fp2 constants <----\n')
buf = inspect.cleandoc(f"""
# Square Root Fp2 constants
# -----------------------------------------------------------------
""")
buf += '\n'
buf += f'const {curve_name}_sqrt_QNR* = '
buf += field_to_nim(sqrt_QNR, 'Fp2', curve_name)
buf += '\n'
buf += f'const {curve_name}_sqrt_sqrt_QNR* = '
buf += field_to_nim(sqrt_sqrt_QNR, 'Fp2', curve_name)
buf += '\n'
buf += f'const {curve_name}_sqrt_minus_sqrt_QNR* = '
buf += field_to_nim(sqrt_minus_sqrt_QNR, 'Fp2', curve_name)
buf += '\n'
return buf
# CLI
# ---------------------------------------------------------
if __name__ == "__main__":
# Usage
# BLS12-381
# sage sage/derive_sqrt.sage BLS12_381
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("curve",nargs="+")
args = parser.parse_args()
curve = args.curve[0]
if curve not in Curves:
raise ValueError(
curve +
' is not one of the available curves: ' +
str(Curves.keys())
)
else:
sqrt = genSqrtFp2Constants(curve, Curves)
with open(f'{curve.lower()}_square_root.nim', 'w') as f:
f.write(copyright())
f.write('\n\n')
f.write(inspect.cleandoc("""
import
../config/curves,
../io/io_extfields
"""))
f.write('\n\n')
f.write(sqrt)
print(f'Successfully created {curve}_sqrt_fp2.nim')