274 lines
6.8 KiB
Nim
274 lines
6.8 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
import
|
||
# Standard library
|
||
unittest, times, random,
|
||
# Internals
|
||
../constantine/tower_field_extensions/[abelian_groups, fp2_complex],
|
||
../constantine/config/[common, curves],
|
||
../constantine/arithmetic,
|
||
# Test utilities
|
||
../helpers/prng
|
||
|
||
const Iters = 128
|
||
|
||
var rng: RngState
|
||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||
rng.seed(seed)
|
||
echo "test_fp2 xoshiro512** seed: ", seed
|
||
|
||
# Import: wrap in field element tests in small procedures
|
||
# otherwise they will become globals,
|
||
# and will create binary size issues.
|
||
# Also due to Nim stack scanning,
|
||
# having too many elements on the stack (a couple kB)
|
||
# will significantly slow down testing (100x is possible)
|
||
|
||
suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial x²+1)":
|
||
test "Fp2 '1' coordinates in canonical domain":
|
||
template test(C: static Curve) =
|
||
block:
|
||
proc testInstance() =
|
||
let oneFp2 = block:
|
||
var O{.noInit.}: Fp2[C]
|
||
O.setOne()
|
||
O
|
||
let oneBig = block:
|
||
var O{.noInit.}: typeof(C.Mod)
|
||
O.setOne()
|
||
O
|
||
|
||
var r: typeof(C.Mod)
|
||
r.redc(oneFp2.c0.mres, C.Mod, C.getNegInvModWord(), canUseNoCarryMontyMul = false)
|
||
|
||
check:
|
||
bool(r == oneBig)
|
||
bool(oneFp2.c1.mres.isZero())
|
||
|
||
test(BN254)
|
||
test(BLS12_381)
|
||
|
||
test "Squaring 1 returns 1":
|
||
template test(C: static Curve) =
|
||
block:
|
||
proc testInstance() =
|
||
let One = block:
|
||
var O{.noInit.}: Fp2[C]
|
||
O.setOne()
|
||
O
|
||
block:
|
||
var r{.noinit.}: Fp2[C]
|
||
r.square(One)
|
||
check: bool(r == One)
|
||
block:
|
||
var r{.noinit.}: Fp2[C]
|
||
r.prod(One, One)
|
||
check: bool(r == One)
|
||
|
||
testInstance()
|
||
|
||
test(BN254)
|
||
test(BLS12_377)
|
||
test(BLS12_381)
|
||
test(BN446)
|
||
test(FKM12_447)
|
||
test(BLS12_461)
|
||
test(BN462)
|
||
|
||
test "Multiplication by 0 and 1":
|
||
template test(C: static Curve, body: untyped) =
|
||
block:
|
||
proc testInstance() =
|
||
let Zero {.inject.} = block:
|
||
var Z{.noInit.}: Fp2[C]
|
||
Z.setZero()
|
||
Z
|
||
let One {.inject.} = block:
|
||
var O{.noInit.}: Fp2[C]
|
||
O.setOne()
|
||
O
|
||
|
||
for _ in 0 ..< Iters:
|
||
let x {.inject.} = rng.random(Fp2[C])
|
||
var r{.noinit, inject.}: Fp2[C]
|
||
body
|
||
|
||
testInstance()
|
||
|
||
test(BN254):
|
||
r.prod(x, Zero)
|
||
check: bool(r == Zero)
|
||
test(BN254):
|
||
r.prod(Zero, x)
|
||
check: bool(r == Zero)
|
||
test(BN254):
|
||
r.prod(x, One)
|
||
check: bool(r == x)
|
||
test(BN254):
|
||
r.prod(One, x)
|
||
check: bool(r == x)
|
||
test(BLS12_381):
|
||
r.prod(x, Zero)
|
||
check: bool(r == Zero)
|
||
test(BLS12_381):
|
||
r.prod(Zero, x)
|
||
check: bool(r == Zero)
|
||
test(BLS12_381):
|
||
r.prod(x, One)
|
||
check: bool(r == x)
|
||
test(BLS12_381):
|
||
r.prod(One, x)
|
||
check: bool(r == x)
|
||
|
||
test "Multiplication and Squaring are consistent":
|
||
template test(C: static Curve) =
|
||
block:
|
||
proc testInstance() =
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random(Fp2[C])
|
||
var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C]
|
||
|
||
rMul.prod(a, a)
|
||
rSqr.square(a)
|
||
|
||
check: bool(rMul == rSqr)
|
||
|
||
testInstance()
|
||
|
||
test(BN254)
|
||
test(BLS12_377)
|
||
test(BLS12_381)
|
||
test(BN446)
|
||
test(FKM12_447)
|
||
test(BLS12_461)
|
||
test(BN462)
|
||
|
||
test "𝔽p2 = 𝔽p[𝑖] addition is associative and commutative":
|
||
proc abelianGroup(curve: static Curve) =
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random(Fp2[curve])
|
||
let b = rng.random(Fp2[curve])
|
||
let c = rng.random(Fp2[curve])
|
||
|
||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
|
||
|
||
# r0 = (a + b) + c
|
||
tmp1.sum(a, b)
|
||
tmp2.sum(tmp1, c)
|
||
let r0 = tmp2
|
||
|
||
# r1 = a + (b + c)
|
||
tmp1.sum(b, c)
|
||
tmp2.sum(a, tmp1)
|
||
let r1 = tmp2
|
||
|
||
# r2 = (a + c) + b
|
||
tmp1.sum(a, c)
|
||
tmp2.sum(tmp1, b)
|
||
let r2 = tmp2
|
||
|
||
# r3 = a + (c + b)
|
||
tmp1.sum(c, b)
|
||
tmp2.sum(a, tmp1)
|
||
let r3 = tmp2
|
||
|
||
# r4 = (c + a) + b
|
||
tmp1.sum(c, a)
|
||
tmp2.sum(tmp1, b)
|
||
let r4 = tmp2
|
||
|
||
# ...
|
||
|
||
check:
|
||
bool(r0 == r1)
|
||
bool(r0 == r2)
|
||
bool(r0 == r3)
|
||
bool(r0 == r4)
|
||
|
||
abelianGroup(BN254)
|
||
abelianGroup(BLS12_377)
|
||
abelianGroup(BLS12_381)
|
||
abelianGroup(BN446)
|
||
abelianGroup(FKM12_447)
|
||
abelianGroup(BLS12_461)
|
||
abelianGroup(BN462)
|
||
|
||
test "𝔽p2 = 𝔽p[𝑖] multiplication is associative and commutative":
|
||
proc commutativeRing(curve: static Curve) =
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random(Fp2[curve])
|
||
let b = rng.random(Fp2[curve])
|
||
let c = rng.random(Fp2[curve])
|
||
|
||
var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve]
|
||
|
||
# r0 = (a * b) * c
|
||
tmp1.prod(a, b)
|
||
tmp2.prod(tmp1, c)
|
||
let r0 = tmp2
|
||
|
||
# r1 = a * (b * c)
|
||
tmp1.prod(b, c)
|
||
tmp2.prod(a, tmp1)
|
||
let r1 = tmp2
|
||
|
||
# r2 = (a * c) * b
|
||
tmp1.prod(a, c)
|
||
tmp2.prod(tmp1, b)
|
||
let r2 = tmp2
|
||
|
||
# r3 = a * (c * b)
|
||
tmp1.prod(c, b)
|
||
tmp2.prod(a, tmp1)
|
||
let r3 = tmp2
|
||
|
||
# r4 = (c * a) * b
|
||
tmp1.prod(c, a)
|
||
tmp2.prod(tmp1, b)
|
||
let r4 = tmp2
|
||
|
||
# ...
|
||
|
||
check:
|
||
bool(r0 == r1)
|
||
bool(r0 == r2)
|
||
bool(r0 == r3)
|
||
bool(r0 == r4)
|
||
|
||
commutativeRing(BN254)
|
||
commutativeRing(BLS12_377)
|
||
commutativeRing(BLS12_381)
|
||
commutativeRing(BN446)
|
||
commutativeRing(FKM12_447)
|
||
commutativeRing(BLS12_461)
|
||
commutativeRing(BN462)
|
||
|
||
test "𝔽p2 = 𝔽p[𝑖] extension field multiplicative inverse":
|
||
proc mulInvOne(curve: static Curve) =
|
||
var one: Fp2[curve]
|
||
one.setOne()
|
||
|
||
var aInv, r{.noInit.}: Fp2[curve]
|
||
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random(Fp2[curve])
|
||
aInv.inv(a)
|
||
r.prod(a, aInv)
|
||
check: bool(r == one)
|
||
r.prod(aInv, a)
|
||
check: bool(r == one)
|
||
|
||
mulInvOne(BN254)
|
||
mulInvOne(BLS12_377)
|
||
mulInvOne(BLS12_381)
|
||
mulInvOne(BN446)
|
||
mulInvOne(FKM12_447)
|
||
mulInvOne(BLS12_461)
|
||
mulInvOne(BN462)
|