constantine/helpers/prng_unsafe.nim

492 lines
18 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../constantine/platforms/abstractions,
../constantine/math/arithmetic,
../constantine/math/arithmetic/limbs_montgomery,
../constantine/math/config/curves,
../constantine/math/elliptic/[
ec_shortweierstrass_affine,
ec_shortweierstrass_projective,
ec_shortweierstrass_jacobian,
ec_shortweierstrass_jacobian_extended,
ec_twistededwards_affine,
ec_twistededwards_projective],
../constantine/math/io/io_bigints,
../constantine/math/extension_fields/towers
# ############################################################
#
# Pseudo-Random Number Generator
# Unsafe: for testing and benchmarking purposes
#
# ############################################################
#
# Our field elements for elliptic curve cryptography
# are in the 2^256~2^512 range.
# For pairings, with embedding degrees of 12 to 48
# We would need 12~48 field elements per point on the curve
#
# The recommendation by Vigna at http://prng.di.unimi.it
# is to have a period of t^2 if we need t values (i.e. about 2^1024)
# but also that for all practical purposes 2^256 period is enough
#
# We use 2^512 to cover the range the base field elements
# We use Nim effect system to track RNG subroutines
type UnsafePRNG* = object
type RngState* = object
## This is the state of a Xoshiro512** PRNG
## Unsafe: for testing and benchmarking purposes only
s: array[8, uint64]
func splitMix64(state: var uint64): uint64 =
state += 0x9e3779b97f4a7c15'u64
result = state
result = (result xor (result shr 30)) * 0xbf58476d1ce4e5b9'u64
result = (result xor (result shr 27)) * 0xbf58476d1ce4e5b9'u64
result = result xor (result shr 31)
func seed*(rng: var RngState, x: SomeInteger) =
## Seed the random number generator with a fixed seed
var sm64 = uint64(x)
rng.s[0] = splitMix64(sm64)
rng.s[1] = splitMix64(sm64)
rng.s[2] = splitMix64(sm64)
rng.s[3] = splitMix64(sm64)
rng.s[4] = splitMix64(sm64)
rng.s[5] = splitMix64(sm64)
rng.s[6] = splitMix64(sm64)
rng.s[7] = splitMix64(sm64)
func rotl(x: uint64, k: static int): uint64 {.inline.} =
return (x shl k) or (x shr (64 - k))
template `^=`(x: var uint64, y: uint64) =
x = x xor y
func next*(rng: var RngState): uint64 {.tags: [UnsafePRNG].} =
## Compute a random uint64 from the input state
## using xoshiro512** algorithm by Vigna et al
## State is updated.
result = rotl(rng.s[1] * 5, 7) * 9
let t = rng.s[1] shl 11
rng.s[2] ^= rng.s[0];
rng.s[5] ^= rng.s[1];
rng.s[1] ^= rng.s[2];
rng.s[7] ^= rng.s[3];
rng.s[3] ^= rng.s[4];
rng.s[4] ^= rng.s[5];
rng.s[0] ^= rng.s[6];
rng.s[6] ^= rng.s[7];
rng.s[6] ^= t;
rng.s[7] = rotl(rng.s[7], 21);
# Integer ranges
# ------------------------------------------------------------
func random_unsafe*(rng: var RngState, maxExclusive: uint32): uint32 =
## Generate a random integer in 0 ..< maxExclusive
## Uses an unbiaised generation method
## See Lemire's algorithm modified by Melissa O'Neill
## https://www.pcg-random.org/posts/bounded-rands.html
## Original:
## biaised: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
## unbiaised: https://arxiv.org/pdf/1805.10941.pdf
## Also:
## Barrett Reduction: https://en.wikipedia.org/wiki/Barrett_reduction
## http://www.acsel-lab.com/arithmetic/arith18/papers/ARITH18_Hasenplaugh.pdf
let max = maxExclusive
var x = uint32 rng.next()
var m = x.uint64 * max.uint64
var l = uint32 m
if l < max:
var t = not(max) + 1 # -max
if t >= max:
t -= max
if t >= max:
t = t mod max
while l < t:
x = uint32 rng.next()
m = x.uint64 * max.uint64
l = uint32 m
return uint32(m shr 32)
func random_unsafe*[T: SomeInteger](rng: var RngState, inclRange: Slice[T]): T =
## Return a random integer in the given range.
## The range bounds must fit in an int32.
let maxExclusive = inclRange.b + 1 - inclRange.a
result = T(rng.random_unsafe(uint32 maxExclusive))
result += inclRange.a
# Containers
# ------------------------------------------------------------
func sample_unsafe*[T](rng: var RngState, src: openarray[T]): T =
## Return a random sample from an array
result = src[rng.random_unsafe(uint32 src.len)]
# BigInts and Fields
# ------------------------------------------------------------
#
# Statistics note:
# - A skewed distribution is not symmetric, it has a longer tail in one direction.
# for example a RNG that is not centered over 0.5 distribution of 0 and 1 but
# might produces more 1 than 0 or vice-versa.
# - A bias is a result that is consistently off from the true value i.e.
# a deviation of an estimate from the quantity under observation
func reduceViaMont[N: static int, F](reduced: var array[N, SecretWord], unreduced: array[2*N, SecretWord], _: typedesc[F]) =
# reduced.reduce(unreduced, FF.fieldMod())
# ----------------------------------------
# With R ≡ (2^WordBitWidth)^numWords (mod p)
# redc2xMont(a) computes a/R (mod p)
# mulMont(a, b) computes a.b.R⁻¹ (mod p)
# Hence with b = R², this computes a (mod p).
# Montgomery reduction works word by word, quadratically
# so for 384-bit prime (6-words on 64-bit CPUs), so 6*6 = 36, twice for multiplication and reduction
# significantly faster than division which works bit-by-bit due to constant-time requirement
reduced.redc2xMont(unreduced, # a/R
F.fieldMod().limbs, F.getNegInvModWord(),
F.getSpareBits())
reduced.mulMont(reduced, F.getR2modP().limbs, # (a/R) * R² * R⁻¹ ≡ a (mod p)
F.fieldMod().limbs, F.getNegInvModWord(),
F.getSpareBits())
func random_unsafe(rng: var RngState, a: var Limbs) =
## Initialize standalone limbs
for i in 0 ..< a.len:
a[i] = SecretWord(rng.next())
template clearExtraBitsOverMSB(a: var BigInt) =
## If we do bit manipulation at the word level,
## for example a 381-bit BigInt stored in a 384-bit buffer
## we need to clear the upper 3-bit
when a.bits != a.limbs.len * WordBitWidth:
const posExtraBits = a.bits - (a.limbs.len-1) * WordBitWidth
const mask = (One shl posExtraBits) - One
a.limbs[a.limbs.len-1] = a.limbs[a.limbs.len-1] and mask
func random_unsafe(rng: var RngState, a: var BigInt) =
## Initialize a standalone BigInt
rng.random_unsafe(a.limbs)
a.clearExtraBitsOverMSB()
func random_unsafe(rng: var RngState, a: var FF) =
## Initialize a Field element
## Unsafe: for testing and benchmarking purposes only
var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len]
rng.random_unsafe(unreduced)
a.mres.limbs.reduceViaMont(unreduced, FF)
func random_unsafe(rng: var RngState, a: var ExtensionField) =
## Recursively initialize an extension Field element
## Unsafe: for testing and benchmarking purposes only
for i in 0 ..< a.coords.len:
rng.random_unsafe(a.coords[i])
func random_word_highHammingWeight(rng: var RngState): BaseType =
let numZeros = rng.random_unsafe(WordBitWidth div 3) # Average Hamming Weight is 1-0.33/2 = 0.83
result = high(BaseType)
for _ in 0 ..< numZeros:
result = result.clearBit rng.random_unsafe(WordBitWidth)
func random_highHammingWeight(rng: var RngState, a: var Limbs) =
## Initialize standalone limbs
## with high Hamming weight
## to have a higher probability of triggering carries
for i in 0 ..< a.len:
a[i] = SecretWord rng.random_word_highHammingWeight()
func random_highHammingWeight(rng: var RngState, a: var BigInt) =
## Initialize a standalone BigInt
## with high Hamming weight
## to have a higher probability of triggering carries
rng.random_highHammingWeight(a.limbs)
a.clearExtraBitsOverMSB()
func random_highHammingWeight(rng: var RngState, a: var FF) =
## Recursively initialize a BigInt (part of a field) or Field element
## Unsafe: for testing and benchmarking purposes only
## The result will have a high Hamming Weight
## to have a higher probability of triggering carries
var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len]
rng.random_highHammingWeight(unreduced)
a.mres.limbs.reduceViaMont(unreduced, FF)
func random_highHammingWeight(rng: var RngState, a: var ExtensionField) =
## Recursively initialize an extension Field element
## Unsafe: for testing and benchmarking purposes only
for i in 0 ..< a.coords.len:
rng.random_highHammingWeight(a.coords[i])
func random_long01Seq(rng: var RngState, a: var openArray[byte]) =
## Initialize a bytearray
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
# See libsecp256k1: https://github.com/bitcoin-core/secp256k1/blob/dbd41db1/src/testrand_impl.h#L90-L104
let Bits = a.len * 8
var bit = 0
zeroMem(a[0].addr, a.len)
while bit < Bits :
var now = 1 + (rng.random_unsafe(1 shl 6) * rng.random_unsafe(1 shl 5) + 16) div 31
let val = rng.sample_unsafe([0, 1])
while now > 0 and bit < Bits:
a[bit shr 3] = a[bit shr 3] or byte(val shl (bit and 7))
dec now
inc bit
func random_long01Seq(rng: var RngState, a: var BigInt) =
## Initialize a bigint
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
var buf: array[a.bits.ceilDiv_vartime(8), byte]
rng.random_long01Seq(buf)
let order = rng.sample_unsafe([bigEndian, littleEndian])
if order == bigEndian:
a.unmarshal(buf, bigEndian)
else:
a.unmarshal(buf, littleEndian)
a.clearExtraBitsOverMSB()
func random_long01Seq(rng: var RngState, a: var Limbs) =
## Initialize standalone limbs
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
const bits = a.len*WordBitWidth
var t{.noInit.}: BigInt[bits]
rng.random_long01Seq(t)
a = t.limbs
func random_long01Seq(rng: var RngState, a: var FF) =
## Recursively initialize a BigInt (part of a field) or Field element
## It is skewed towards producing strings of 1111... and 0000
## to trigger edge cases
var unreduced{.noinit.}: Limbs[2*a.mres.limbs.len]
rng.random_long01Seq(unreduced)
a.mres.limbs.reduceViaMont(unreduced, FF)
func random_long01Seq(rng: var RngState, a: var ExtensionField) =
## Recursively initialize an extension Field element
## Unsafe: for testing and benchmarking purposes only
for i in 0 ..< a.coords.len:
rng.random_long01Seq(a.coords[i])
# Elliptic curves
# ------------------------------------------------------------
type ECP = ECP_ShortW_Aff or ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_JacExt or
ECP_TwEdwards_Aff or ECP_TwEdwards_Prj
type ECP_ext = ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_JacExt or
ECP_TwEdwards_Prj
template trySetFromCoord[F](a: ECP, fieldElem: F): SecretBool =
when a is (ECP_ShortW_Aff or ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_JacExt):
trySetFromCoordX(a, fieldElem)
else:
trySetFromCoordY(a, fieldElem)
template trySetFromCoords[F](a: ECP, fieldElem, scale: F): SecretBool =
when a is (ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_JacExt):
trySetFromCoordsXandZ(a, fieldElem, scale)
else:
trySetFromCoordsYandZ(a, fieldElem, scale)
func random_unsafe(rng: var RngState, a: var ECP) =
## Initialize a random curve point with Z coordinate == 1
## Unsafe: for testing and benchmarking purposes only
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_unsafe(fieldElem)
success = trySetFromCoord(a, fieldElem)
func random_unsafe_with_randZ(rng: var RngState, a: var ECP_ext) =
## Initialize a random curve point with Z coordinate being random
## Unsafe: for testing and benchmarking purposes only
var Z{.noInit.}: a.F
rng.random_unsafe(Z) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
rng.random_unsafe(fieldElem)
success = trySetFromCoords(a, fieldElem, Z)
func random_highHammingWeight(rng: var RngState, a: var ECP) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG with high Hamming Weight
## to trigger carry bugs
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_highHammingWeight(fieldElem)
success = trySetFromCoord(a, fieldElem)
func random_highHammingWeight_with_randZ(rng: var RngState, a: var ECP_ext) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG with high Hamming Weight
## to trigger carry bugs
var Z{.noInit.}: a.F
rng.random_highHammingWeight(Z) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
rng.random_highHammingWeight(fieldElem)
success = trySetFromCoords(a, fieldElem, Z)
func random_long01Seq(rng: var RngState, a: var ECP) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG
## that produces long bitstrings of 0 and 1
## to trigger edge cases
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
# Euler's criterion: there are (p-1)/2 squares in a field with modulus `p`
# so we have a probability of ~0.5 to get a good point
rng.random_long01Seq(fieldElem)
success = trySetFromCoord(a, fieldElem)
func random_long01Seq_with_randZ(rng: var RngState, a: var ECP_ext) =
## Initialize a random curve point with Z coordinate == 1
## This will be generated with a biaised RNG
## that produces long bitstrings of 0 and 1
## to trigger edge cases
var Z{.noInit.}: a.F
rng.random_long01Seq(Z) # If Z is zero, X will be zero and that will be an infinity point
var fieldElem {.noInit.}: a.F
var success = CtFalse
while not bool(success):
rng.random_long01Seq(fieldElem)
success = trySetFromCoords(a, fieldElem, Z)
# Generic over any Constantine type
# ------------------------------------------------------------
func random_unsafe*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Unsafe: for testing and benchmarking purposes only
when T is ECP:
rng.random_unsafe(result)
elif T is SomeNumber:
cast[T](rng.next())
elif T is BigInt:
rng.random_unsafe(result)
else: # Fields
rng.random_unsafe(result)
func random_unsafe_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T =
## Create a random curve element with a random Z coordinate
## Unsafe: for testing and benchmarking purposes only
rng.random_unsafe_with_randZ(result)
func random_highHammingWeight*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Skewed towards high Hamming Weight
when T is ECP:
rng.random_highHammingWeight(result)
elif T is SomeNumber:
cast[T](rng.next())
elif T is BigInt:
rng.random_highHammingWeight(result)
else: # Fields
rng.random_highHammingWeight(result)
func random_highHammingWeight_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T =
## Create a random curve element with a random Z coordinate
## Skewed towards high Hamming Weight
rng.random_highHammingWeight_with_randZ(result)
func random_long01Seq*(rng: var RngState, T: typedesc): T =
## Create a random Field or Extension Field or Curve Element
## Skewed towards long bitstrings of 0 or 1
when T is ECP:
rng.random_long01Seq(result)
elif T is SomeNumber:
cast[T](rng.next())
elif T is BigInt:
rng.random_long01Seq(result)
else: # Fields
rng.random_long01Seq(result)
func random_long01Seq_with_randZ*(rng: var RngState, T: typedesc[ECP_ext]): T =
## Create a random curve element with a random Z coordinate
## Skewed towards long bitstrings of 0 or 1
rng.random_long01Seq_with_randZ(result)
# Byte sequences
# ------------------------------------------------------------
func random_byte_seq*(rng: var RngState, length: int): seq[byte] =
result.newSeq(length)
for b in result.mitems:
b = byte rng.next()
# Sanity checks
# ------------------------------------------------------------
when isMainModule:
import std/[tables, times, strutils]
var rng: RngState
let timeSeed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(timeSeed)
echo "prng_sanity_checks xoshiro512** seed: ", timeSeed
proc test[T](s: Slice[T]) =
var c = initCountTable[int]()
for _ in 0 ..< 1_000_000:
c.inc(rng.random_unsafe(s))
echo "1'000'000 pseudo-random outputs from ", s.a, " to ", s.b, " (incl): ", c
test(0..1)
test(0..2)
test(1..52)
test(-10..10)
echo "\n-----------------------------\n"
echo "High Hamming Weight check"
for _ in 0 ..< 10:
let word = rng.random_word_highHammingWeight()
echo "0b", cast[BiggestInt](word).toBin(WordBitWidth), " - 0x", word.toHex()
echo "\n-----------------------------\n"
echo "Long strings of 0 or 1 check"
for _ in 0 ..< 10:
var a: BigInt[127]
rng.random_long01seq(a)
stdout.write "0b"
for word in a.limbs:
stdout.write cast[BiggestInt](word).toBin(WordBitWidth)
stdout.write " - 0x"
for word in a.limbs:
stdout.write word.BaseType.toHex()
stdout.write '\n'