constantine/benchmarks/bench_elliptic_parallel_template.nim
Mamy Ratsimbazafy 0f9b9e9606
Parallel Ethereum protocols (BLS signature and KZG) (#279)
* BLS sig: parallel batch verification

* BLS: speedup parallel batch verify with Miller loops on local threads

* shutdown bench

* nit: import style

* implement parallel KZG

* Parallel KZG commitments

* add benchmarks of KZG

* rename protocol file

* small optim: reorder await

* fix rebase

* Faster parallel BLS verification

* fix commitment status replacing previous error in verify_blob_kzg_proof_batch_parallel

* 2x faster parallel EC sum for less than 8192 points
2023-10-06 09:58:20 +02:00

138 lines
5.4 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Internals
../constantine/math/config/curves,
../constantine/math/arithmetic,
../constantine/math/elliptic/[
ec_shortweierstrass_affine,
ec_shortweierstrass_projective,
ec_shortweierstrass_jacobian,
ec_shortweierstrass_jacobian_extended,
ec_shortweierstrass_batch_ops_parallel,
ec_multi_scalar_mul,
ec_scalar_mul,
ec_multi_scalar_mul_parallel],
../constantine/math/constants/zoo_subgroups,
# Threadpool
../constantine/threadpool/[threadpool, partitioners],
# Helpers
../helpers/prng_unsafe,
./bench_elliptic_template,
./bench_blueprint
export bench_elliptic_template
# ############################################################
#
# Parallel Benchmark definitions
#
# ############################################################
proc multiAddParallelBench*(EC: typedesc, numPoints: int, iters: int) =
var points = newSeq[ECP_ShortW_Aff[EC.F, EC.G]](numPoints)
for i in 0 ..< numPoints:
points[i] = rng.random_unsafe(ECP_ShortW_Aff[EC.F, EC.G])
var r{.noInit.}: EC
let tp = Threadpool.new()
bench("EC parallel batch add (" & align($tp.numThreads, 2) & " threads) " & $EC.G & " (" & $numPoints & " points)", EC, iters):
tp.sum_reduce_vartime_parallel(r, points)
tp.shutdown()
proc msmParallelBench*(EC: typedesc, numPoints: int, iters: int) =
const bits = EC.F.C.getCurveOrderBitwidth()
var points = newSeq[ECP_ShortW_Aff[EC.F, EC.G]](numPoints)
var scalars = newSeq[BigInt[bits]](numPoints)
# Creating millions of points and clearing their cofactor takes a long long time
var tp = Threadpool.new()
proc genCoefPointPairs(rngSeed: uint64, start, len: int, points: ptr ECP_ShortW_Aff[EC.F, EC.G], scalars: ptr BigInt[bits]) {.nimcall.} =
let points = cast[ptr UncheckedArray[ECP_ShortW_Aff[EC.F, EC.G]]](points) # TODO use views to reduce verbosity
let scalars = cast[ptr UncheckedArray[BigInt[bits]]](scalars)
# RNGs are not threadsafe, create a threadlocal one seeded from the global RNG
var threadRng: RngState
threadRng.seed(rngSeed)
for i in start ..< start + len:
var tmp = threadRng.random_unsafe(EC)
tmp.clearCofactor()
points[i].affine(tmp)
scalars[i] = rng.random_unsafe(BigInt[bits])
let chunks = balancedChunksPrioNumber(0, numPoints, tp.numThreads)
syncScope:
for (id, start, size) in items(chunks):
tp.spawn genCoefPointPairs(rng.next(), start, size, points[0].addr, scalars[0].addr)
# Even if child threads are sleeping, it seems like perf is lower when there are threads around
# maybe because the kernel has more overhead or time quantum to keep track off so shut them down.
tp.shutdown()
var r{.noInit.}: EC
var startNaive, stopNaive, startMSMbaseline, stopMSMbaseline, startMSMopt, stopMSMopt, startMSMpara, stopMSMpara: MonoTime
if numPoints <= 100000:
startNaive = getMonotime()
bench("EC scalar muls " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
var tmp: EC
r.setInf()
for i in 0 ..< points.len:
tmp.fromAffine(points[i])
tmp.scalarMul(scalars[i])
r += tmp
stopNaive = getMonotime()
if numPoints <= 100000:
startMSMbaseline = getMonotime()
bench("EC multi-scalar-mul baseline " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
r.multiScalarMul_reference_vartime(scalars, points)
stopMSMbaseline = getMonotime()
block:
startMSMopt = getMonotime()
bench("EC multi-scalar-mul optimized " & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
r.multiScalarMul_vartime(scalars, points)
stopMSMopt = getMonotime()
block:
tp = Threadpool.new()
startMSMpara = getMonotime()
bench("EC multi-scalar-mul" & align($tp.numThreads & " threads", 11) & align($numPoints, 10) & " (" & $bits & "-bit coefs, points)", EC, iters):
tp.multiScalarMul_vartime_parallel(r, scalars, points)
stopMSMpara = getMonotime()
tp.shutdown()
let perfNaive = inNanoseconds((stopNaive-startNaive) div iters)
let perfMSMbaseline = inNanoseconds((stopMSMbaseline-startMSMbaseline) div iters)
let perfMSMopt = inNanoseconds((stopMSMopt-startMSMopt) div iters)
let perfMSMpara = inNanoseconds((stopMSMpara-startMSMpara) div iters)
if numPoints <= 100000:
let speedupBaseline = float(perfNaive) / float(perfMSMbaseline)
echo &"Speedup ratio baseline over naive linear combination: {speedupBaseline:>6.3f}x"
let speedupOpt = float(perfNaive) / float(perfMSMopt)
echo &"Speedup ratio optimized over naive linear combination: {speedupOpt:>6.3f}x"
let speedupOptBaseline = float(perfMSMbaseline) / float(perfMSMopt)
echo &"Speedup ratio optimized over baseline linear combination: {speedupOptBaseline:>6.3f}x"
let speedupParaOpt = float(perfMSMopt) / float(perfMSMpara)
echo &"Speedup ratio parallel over optimized linear combination: {speedupParaOpt:>6.3f}x"