* rework assembler register/mem and constraint declarations * Introduce constraint UnmutatedPointerToWriteMem * Create invidual memory cell operands * [Assembly] fully support indirect memory addressing * fix calling convention for exported procs * Prepare for switch to intel syntax to avoid clang constant propagation asm symbol name interfering OR pointer+offset addressing * use modifiers to prevent bad string mixin fo assembler to linker of propagated consts * Assembly: switch to intel syntax * with working memory operand - now works with LTO on both GCC and clang and constant folding * use memory operand in more places * remove some inline now that we have lto * cleanup compiler config and benches * tracer shouldn't force dependencies when unused * fix cc on linux * nimble fixes * update README [skip CI] * update MacOS CI with Homebrew Clang * oops nimble bindings disappeared * more nimble fixes * fix sha256 exported symbol * improve constraints on modular addition * Add extra constraint to force reloading of pointer in reg inputs * Fix LLVM gold linker running out of registers * workaround MinGW64 GCC 12.2 bad codegen in t_pairing_cyclotomic_subgroup with LTO
Metering
Overview
This folder allows measuring an accurate cost of high-level primitives in terms of basic operations (Field mul, add, inv, ...)
For optimization
Metering allows choosing the best algorithm or representation when multiple are available, for example choosing elliptic curve coordinates between affine projective or jacobian? Also some might be faster for certain fields (Fp or Fp2) or certain curves.
It also allows to focus tuning operations that underlie the high-level building blocks. This is not a replacement for profiling but a complement. Metering allows reasoning at the complexity and algorithmic level while profiling allows reasoning at the hardware and timing level.
For blockchains
Important for blockchain to correctly price the VM opcodes. Pricing too low would allow denial-of-service attacks, too high will disincentivize their use.
Note: this only takes into account the number of operations but does not take into account stack usage for temporaries.
Measuring cost
The file m_pairings has a minimal example for the current state.
var rng*: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
result = rng.random_unsafe(EC)
result.clearCofactor()
proc pairingBLS12Meter*(C: static Curve) =
let
P = rng.random_point(ECP_ShortW_Prj[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
var f: Fp12[C]
resetMetering()
f.pairing_bls12(P, Q)
resetMetering()
pairingBLS12Meter(BLS12_381)
const flags = if UseASM_X86_64 or UseASM_X86_32: "UseAssembly" else: "NoAssembly"
reportCli(Metrics, flags)
After compiling with
nim c -r --hints:off --warnings:off --verbosity:0 -d:danger -d:CttMeter --outdir:build metering/m_pairings.nim
We get
bench xoshiro512** seed: 1611954740
CPU: Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
The CPU Cycle Count is indicative only. It cannot be used to compare across systems, works at your CPU nominal frequency and is sensitive to overclocking, throttling and frequency scaling (powersaving and Turbo Boost).
|--------------------------------------------------|--------------|--------------------|---------------|-----------------|--------------------------|--------------------------|
| Procedures | # of Calls | Throughput (ops/s) | Time (µs) | Avg Time (µs) | CPU cycles (in billions) | Avg cycles (in billions) |
| UseAssembly | | | | | indicative only | indicative only |
|--------------------------------------------------|--------------|--------------------|---------------|-----------------|--------------------------|--------------------------|
|`+=`* | 11473| inf| 0.000| 0.000|
|`-=`* | 18603| 2067000000000.000| 0.009| 0.000|
|double* | 7212| 2404000000000.000| 0.003| 0.000|
|sum* | 21058| 7019333333333.333| 0.003| 0.000|
|diff* | 8884| 2961333333333.333| 0.003| 0.000|
|diff* | 10| inf| 0.000| 0.000|
|double* | 4186| inf| 0.000| 0.000|
|prod* | 14486| 1609555555555.555| 0.009| 0.000|
|square* | 16| inf| 0.000| 0.000|
|neg* | 2093| inf| 0.000| 0.000|
|neg* | 2050| inf| 0.000| 0.000|
|div2* | 512| inf| 0.000| 0.000|
|`*=`* | 5584| 620444444444.444| 0.009| 0.000|
|square* | 1116| inf| 0.000| 0.000|
|square_repeated* | 126| 1235294117.647| 0.102| 0.001|
|finalExpEasy* | 1| 5555555.556| 0.180| 0.180|
|cyclotomic_inv* | 5| 1000000000.000| 0.005| 0.001|
|cyclotomic_inv* | 1| inf| 0.000| 0.000|
|cyclotomic_square* | 6| 70588235.294| 0.085| 0.014|
|cyclotomic_square* | 309| 70499657.769| 4.383| 0.014|
|cycl_sqr_repeated* | 25| 5556790.398| 4.499| 0.180|
|millerLoopGenericBLS12* | 1| 279251.606| 3.581| 3.581|
|finalExpHard_BLS12* | 1| 178475.817| 5.603| 5.603|
|pairing_bls12* | 1| 105196.718| 9.506| 9.506|
|--------------------------------------------------|--------------|--------------------|---------------|-----------------|--------------------------|--------------------------|
The reporting and tracing will be improved to collect the fields and curves It's already useful to know how many base field operations are necessary.