Mamy Ratsimbazafy 54887b1777
[Research] KZG polynomial commitment - part 1 FFT (#151)
* FFT compiles, now on to debugging ... [skip CI]

* Fix FFT and add bench [skip ci]

* rename + add KZG resources

* rename fft_fr

* Implement FFT on elliptic curves =)

* FFT G1 bench
2021-02-06 22:11:17 +01:00

248 lines
7.5 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# Strided View - Monodimensional Tensors
# ----------------------------------------------------------------
#
# FFT uses recursive divide-and-conquer.
# In code this means need strided views
# to enable different logical views of the same memory buffer.
# Strided views are monodimensional tensors:
# See Arraymancer backend:
# https://github.com/mratsim/Arraymancer/blob/71cf616/src/arraymancer/laser/tensor/datatypes.nim#L28-L32
# Or the minimal tensor implementation challenge:
# https://github.com/SimonDanisch/julia-challenge/blob/b8ed3b6/nim/nim_sol_mratsim.nim#L4-L26
{.experimental: "views".}
type
View*[T] = object
## A strided view over an (unowned) data buffer
len*: int
stride: int
offset: int
data: lent UncheckedArray[T]
func `[]`*[T](v: View[T], idx: int): lent T {.inline.} =
v.data[v.offset + idx*v.stride]
func `[]`*[T](v: var View[T], idx: int): var T {.inline.} =
# Experimental views indeed ...
cast[ptr UncheckedArray[T]](v.data)[v.offset + idx*v.stride]
func `[]=`*[T](v: var View[T], idx: int, val: T) {.inline.} =
# Experimental views indeed ...
cast[ptr UncheckedArray[T]](v.data)[v.offset + idx*v.stride] = val
func toView*[T](oa: openArray[T]): View[T] {.inline.} =
result.len = oa.len
result.stride = 1
result.offset = 0
result.data = cast[lent UncheckedArray[T]](oa[0].unsafeAddr)
iterator items*[T](v: View[T]): lent T =
var cur = v.offset
for _ in 0 ..< v.len:
yield v.data[cur]
cur += v.stride
func `$`*(v: View): string =
result = "View["
var first = true
for elem in v:
if not first:
result &= ", "
else:
first = false
result &= $elem
result &= ']'
func toHex*(v: View): string =
mixin toHex
result = "View["
var first = true
for elem in v:
if not first:
result &= ", "
else:
first = false
result &= elem.toHex()
result &= ']'
# FFT-specific splitting
# -------------------------------------------------------------------------------
func splitAlternate*(t: View): tuple[even, odd: View] {.inline.} =
## Split the tensor into 2
## partitioning the input every other index
## even: indices [0, 2, 4, ...]
## odd: indices [ 1, 3, 5, ...]
assert (t.len and 1) == 0, "The tensor must contain an even number of elements"
let half = t.len shr 1
let skipHalf = t.stride shl 1
result.even.len = half
result.even.stride = skipHalf
result.even.offset = t.offset
result.even.data = t.data
result.odd.len = half
result.odd.stride = skipHalf
result.odd.offset = t.offset + t.stride
result.odd.data = t.data
func splitMiddle*(t: View): tuple[left, right: View] {.inline.} =
## Split the tensor into 2
## partitioning into left and right halves.
## left: indices [0, 1, 2, 3]
## right: indices [4, 5, 6, 7]
assert (t.len and 1) == 0, "The tensor must contain an even number of elements"
let half = t.len shr 1
result.left.len = half
result.left.stride = t.stride
result.left.offset = t.offset
result.left.data = t.data
result.right.len = half
result.right.stride = t.stride
result.right.offset = t.offset + half
result.right.data = t.data
func skipHalf*(t: View): View {.inline.} =
## Pick one every other indices
## output: [0, 2, 4, ...]
assert (t.len and 1) == 0, "The tensor must contain an even number of elements"
result.len = t.len shr 1
result.stride = t.stride shl 1
result.offset = t.offset
result.data = t.data
func slice*(v: View, start, stop, step: int): View {.inline.} =
## Slice a view
## stop is inclusive
# General tensor slicing algorithm is
# https://github.com/mratsim/Arraymancer/blob/71cf616/src/arraymancer/tensor/private/p_accessors_macros_read.nim#L26-L56
#
# for i, slice in slices:
# # Check if we start from the end
# let a = if slice.a_from_end: result.shape[i] - slice.a
# else: slice.a
#
# let b = if slice.b_from_end: result.shape[i] - slice.b
# else: slice.b
#
# # Compute offset:
# result.offset += a * result.strides[i]
# # Now change shape and strides
# result.strides[i] *= slice.step
# result.shape[i] = abs((b-a) div slice.step) + 1
#
# with slices being of size 1, as we have a monodimensional Tensor
# and the slice being a..<b with the reverse case: len-1 -> 0
#
# result is preinitialized with a copy of v (shape, stride, offset, data)
result.offset = v.offset + start * v.stride
result.stride = v.stride * step
result.len = abs((stop-start) div step) + 1
result.data = v.data
func reversed*(v: View): View {.inline.} =
# Hopefully the compiler optimizes div by -1
v.slice(v.len-1, 0, -1)
# ############################################################
#
# Debugging helpers
#
# ############################################################
import strformat, strutils
func display*[F](name: string, indent: int, oa: openArray[F]) =
debugEcho indent(name & ", openarray of " & $F & " of length " & $oa.len, indent)
for i in 0 ..< oa.len:
debugEcho indent(&" {i:>2}: {oa[i].toHex()}", indent)
debugEcho indent(name & " " & $F & " -- FIN\n", indent)
func display*[F](name: string, indent: int, v: View[F]) =
debugEcho indent(name & ", view of " & $F & " of length " & $v.len, indent)
for i in 0 ..< v.len:
debugEcho indent(&" {i:>2}: {v[i].toHex()}", indent)
debugEcho indent(name & " " & $F & " -- FIN\n", indent)
# ############################################################
#
# Sanity checks
#
# ############################################################
when isMainModule:
proc main() =
var x = [0, 1, 2, 3, 4, 5, 6, 7]
let v = x.toView()
echo "view: ", v
echo "reversed: ", v.reversed()
block:
let (even, odd) = v.splitAlternate()
echo "\nSplit Alternate"
echo "----------------"
echo "even: ", even
echo "odd: ", odd
block:
let (ee, eo) = even.splitAlternate()
echo ""
echo "even-even: ", ee
echo "even-odd: ", eo
echo "even-even rev: ", ee.reversed()
echo "even-odd rev: ", eo.reversed()
block:
let (oe, oo) = odd.splitAlternate()
echo ""
echo "odd-even: ", oe
echo "odd-odd: ", oo
echo "odd-even rev: ", oe.reversed()
echo "odd-odd rev: ", oo.reversed()
echo "\nSkip Half"
echo "----------------"
echo "skipHalf: ", v.skipHalf()
echo "skipQuad: ", v.skipHalf().skipHalf()
echo "skipQuad rev: ", v.skipHalf().skipHalf().reversed()
echo "\nSplit middle"
echo "----------------"
block:
let (left, right) = v.splitMiddle()
echo "left: ", left
echo "right: ", right
block:
let (ll, lr) = left.splitMiddle()
echo ""
echo "left-left: ", ll
echo "left-right: ", lr
echo "left-left rev: ", ll.reversed()
echo "left-right rev: ", lr.reversed()
block:
let (rl, rr) = right.splitMiddle()
echo ""
echo "right-left: ", rl
echo "right-right: ", rr
echo "right-left rev: ", rl.reversed()
echo "right-right rev: ", rr.reversed()
main()