constantine/benchmarks/bench_summary_template.nim
Mamy Ratsimbazafy e5612f5705
Multi-Scalar-Multiplication / Linear combination (#220)
* unoptimized msm

* MSM: reorder loops

* add a signed windowed recoding technique

* improve wNAF table access

* use batchAffine

* revamp EC tests

* MSM signed digit support

* refactor MSM: recode signed ahead of time

* missing test vector

* refactor allocs and Alloca sideeffect

* add an endomorphism threshold

* Add Jacobian extended coordinates

* refactor recodings, prepare for parallelizable on-the-fly signed recoding

* recoding changes, introduce proper NAF for pairings

* more pairings refactoring, introduce miller accumulator for EVM

* some optim to the addchain miller loop

* start optimizing multi-pairing

* finish multi-miller loop refactoring

* minor tuning

* MSM: signed encoding suitable for parallelism (no precompute)

* cleanup signed window encoding

* add prefetching

* add metering

* properly init result to infinity

* comment on prefetching

* introduce vartime inversion for batch additions

* fix JacExt infinity conversion

* add batchAffine for MSM, though slower than JacExtended at the moment

* add a batch affine scheduler for MSM

* Add Multi-Scalar-Multiplication endomorphism acceleration

* some tuning

* signed integer fixes + 32-bit + tuning

* Some more tuning

* common msm bench + don't use affine for c < 9

* nit
2023-02-16 12:45:05 +01:00

284 lines
8.6 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Summary of the performance of a curve
#
# ############################################################
import
# Internals
../constantine/platforms/abstractions,
../constantine/math/config/curves,
../constantine/math/[arithmetic, extension_fields],
../constantine/math/elliptic/[
ec_shortweierstrass_affine,
ec_shortweierstrass_projective,
ec_shortweierstrass_jacobian,
ec_scalar_mul, ec_endomorphism_accel],
../constantine/math/constants/zoo_subgroups,
../constantine/math/pairings/[
cyclotomic_subgroups,
pairings_bls12,
pairings_bn
],
../constantine/math/constants/zoo_pairings,
../constantine/hashes,
../constantine/hash_to_curve/hash_to_curve,
# Helpers
../helpers/prng_unsafe,
./bench_blueprint
export
ec_shortweierstrass_projective,
ec_shortweierstrass_jacobian
export abstractions # generic sandwich on SecretBool and SecretBool in Jacobian sum
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
export notes
proc separator*() = separator(152)
proc report(op, domain: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
macro fixEllipticDisplay(T: typedesc): untyped =
# At compile-time, enums are integers and their display is buggy
# we get the Curve ID instead of the curve name.
let instantiated = T.getTypeInst()
var name = $instantiated[1][0] # EllipticEquationFormCoordinates
let fieldName = $instantiated[1][1][0]
let curveName = $Curve(instantiated[1][1][1].intVal)
name.add "[" & fieldName & "[" & curveName & "]]"
result = newLit name
macro fixFieldDisplay(T: typedesc): untyped =
# At compile-time, enums are integers and their display is buggy
# we get the Curve ID instead of the curve name.
let instantiated = T.getTypeInst()
var name = $instantiated[1][0] # Fp
name.add "[" & $Curve(instantiated[1][1].intVal) & "]"
result = newLit name
func fixDisplay(T: typedesc): string =
when T is (ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_Aff):
fixEllipticDisplay(T)
elif T is (Fp or Fp2 or Fp4 or Fp6 or Fp12):
fixFieldDisplay(T)
else:
$T
func fixDisplay(T: Curve): string =
$T
template bench(op: string, T: typed, iters: int, body: untyped): untyped =
measure(iters, startTime, stopTime, startClk, stopClk, body)
report(op, fixDisplay(T), startTime, stopTime, startClk, stopClk, iters)
func clearCofactorReference[F; G: static Subgroup](
ec: var ECP_ShortW_Aff[F, G]) =
# For now we don't have any affine operation defined
var t {.noInit.}: ECP_ShortW_Prj[F, G]
t.fromAffine(ec)
t.clearCofactorReference()
ec.affine(t)
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
result = rng.random_unsafe(EC)
result.clearCofactorReference()
proc mulBench*(T: typedesc, iters: int) =
var r: T
let x = rng.random_unsafe(T)
let y = rng.random_unsafe(T)
preventOptimAway(r)
bench("Multiplication", T, iters):
r.prod(x, y)
proc sqrBench*(T: typedesc, iters: int) =
var r: T
let x = rng.random_unsafe(T)
preventOptimAway(r)
bench("Squaring", T, iters):
r.square(x)
proc invBench*(T: typedesc, iters: int) =
var r: T
let x = rng.random_unsafe(T)
preventOptimAway(r)
bench("Inversion", T, iters):
r.inv(x)
proc sqrtBench*(T: typedesc, iters: int) =
let x = rng.random_unsafe(T)
bench("Square Root + isSquare", T, iters):
var r = x
discard r.sqrt_if_square()
proc addBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
let Q = rng.random_unsafe(T)
bench("EC Add " & G1_or_G2, T, iters):
r.sum(P, Q)
proc mixedAddBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
let Q = rng.random_unsafe(T)
var Qaff: ECP_ShortW_Aff[T.F, T.G]
Qaff.affine(Q)
bench("EC Mixed Addition " & G1_or_G2, T, iters):
r.madd(P, Qaff)
proc doublingBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
bench("EC Double " & G1_or_G2, T, iters):
r.double(P)
proc scalarMulBench*(T: typedesc, iters: int) =
const bits = T.F.C.getCurveOrderBitwidth()
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T) # TODO: clear cofactor
let exponent = rng.random_unsafe(BigInt[bits])
bench("EC ScalarMul " & $bits & "-bit " & G1_or_G2, T, iters):
r = P
when T.F is Fp:
r.scalarMulGLV_m2w2(exponent)
else:
r.scalarMulEndo(exponent)
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Miller Loop BLS12", C, iters):
f.millerLoopGenericBLS12(Q, P)
proc millerLoopBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Miller Loop BN", C, iters):
f.millerLoopGenericBN(Q, P)
proc finalExpBLS12Bench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BLS12", C, iters):
r.finalExpEasy()
r.finalExpHard_BLS12()
proc finalExpBNBench*(C: static Curve, iters: int) =
var r = rng.random_unsafe(Fp12[C])
bench("Final Exponentiation BN", C, iters):
r.finalExpEasy()
r.finalExpHard_BN()
proc pairingBLS12Bench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Pairing BLS12", C, iters):
f.pairing_bls12(P, Q)
proc pairingBNBench*(C: static Curve, iters: int) =
let
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
var f: Fp12[C]
bench("Pairing BN", C, iters):
f.pairing_bn(P, Q)
proc hashToCurveBLS12381G1Bench*(iters: int) =
# Hardcode BLS12_381
# otherwise concept symbol
# 'CryptoHash' resolution issue
const dst = "BLS_SIG_BLS12381G1-SHA256-SSWU-RO_POP_"
let msg = "Mr F was here"
var P: ECP_ShortW_Prj[Fp[BLS12_381], G1]
bench("Hash to G1 (SSWU - Draft #14)", BLS12_381, iters):
sha256.hashToCurve(
k = 128,
output = P,
augmentation = "",
message = msg,
domainSepTag = dst
)
proc hashToCurveBLS12381G2Bench*(iters: int) =
# Hardcode BLS12_381
# otherwise concept symbol
# 'CryptoHash' resolution issue
const dst = "BLS_SIG_BLS12381G2-SHA256-SSWU-RO_POP_"
let msg = "Mr F was here"
var P: ECP_ShortW_Prj[Fp2[BLS12_381], G2]
bench("Hash to G2 (SSWU - Draft #14)", BLS12_381, iters):
sha256.hashToCurve(
k = 128,
output = P,
augmentation = "",
message = msg,
domainSepTag = dst
)
proc hashToCurveBN254SnarksG1Bench*(iters: int) =
# Hardcode BN254_Snarks
# otherwise concept symbol
# 'CryptoHash' resolution issue
const dst = "BLS_SIG_BN254SNARKSG1-SHA256-SVDW-RO_POP_"
let msg = "Mr F was here"
var P: ECP_ShortW_Prj[Fp[BN254_Snarks], G1]
bench("Hash to G1 (SVDW - Draft #14)", BN254_Snarks, iters):
sha256.hashToCurve(
k = 128,
output = P,
augmentation = "",
message = msg,
domainSepTag = dst
)
proc hashToCurveBN254SnarksG2Bench*(iters: int) =
# Hardcode BN254_Snarks
# otherwise concept symbol
# 'CryptoHash' resolution issue
const dst = "BLS_SIG_BN254SNARKSG2-SHA256-SVDW-RO_POP_"
let msg = "Mr F was here"
var P: ECP_ShortW_Prj[Fp2[BN254_Snarks], G2]
bench("Hash to G2 (SVDW - Draft #14)", BN254_Snarks, iters):
sha256.hashToCurve(
k = 128,
output = P,
augmentation = "",
message = msg,
domainSepTag = dst
)