208 lines
6.4 KiB
Nim
208 lines
6.4 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
# ############################################################
|
||
#
|
||
# Benchmark of finite fields
|
||
#
|
||
# ############################################################
|
||
|
||
import
|
||
# Internals
|
||
../constantine/platforms/abstractions,
|
||
../constantine/math/config/curves,
|
||
../constantine/math/arithmetic,
|
||
../constantine/math/extension_fields,
|
||
../constantine/math/constants/zoo_square_roots,
|
||
# Helpers
|
||
../helpers/prng_unsafe,
|
||
./bench_blueprint
|
||
|
||
export notes
|
||
proc separator*() = separator(165)
|
||
proc smallSeparator*() = separator(8)
|
||
|
||
proc report(op, field: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
|
||
let ns = inNanoseconds((stop-start) div iters)
|
||
let throughput = 1e9 / float64(ns)
|
||
when SupportsGetTicks:
|
||
echo &"{op:<70} {field:<18} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
|
||
else:
|
||
echo &"{op:<70} {field:<18} {throughput:>15.3f} ops/s {ns:>9} ns/op"
|
||
|
||
macro fixFieldDisplay(T: typedesc): untyped =
|
||
# At compile-time, enums are integers and their display is buggy
|
||
# we get the Curve ID instead of the curve name.
|
||
let instantiated = T.getTypeInst()
|
||
var name = $instantiated[1][0] # 𝔽p
|
||
name.add "[" & $Curve(instantiated[1][1].intVal) & "]"
|
||
result = newLit name
|
||
|
||
template bench(op: string, T: typedesc, iters: int, body: untyped): untyped =
|
||
measure(iters, startTime, stopTime, startClk, stopClk, body)
|
||
report(op, fixFieldDisplay(T), startTime, stopTime, startClk, stopClk, iters)
|
||
|
||
func random_unsafe(rng: var RngState, a: var FpDbl) =
|
||
## Initialize a standalone Double-Width field element
|
||
## we don't reduce it modulo p², this is only used for benchmark
|
||
let aHi = rng.random_unsafe(Fp[FpDbl.C])
|
||
let aLo = rng.random_unsafe(Fp[FpDbl.C])
|
||
for i in 0 ..< aLo.mres.limbs.len:
|
||
a.limbs2x[i] = aLo.mres.limbs[i]
|
||
for i in 0 ..< aHi.mres.limbs.len:
|
||
a.limbs2x[aLo.mres.limbs.len+i] = aHi.mres.limbs[i]
|
||
|
||
func random_unsafe(rng: var RngState, a: var ExtensionField2x) =
|
||
for i in 0 ..< a.coords.len:
|
||
rng.random_unsafe(a.coords[i])
|
||
|
||
proc addBench*(T: typedesc, iters: int) =
|
||
var x = rng.random_unsafe(T)
|
||
let y = rng.random_unsafe(T)
|
||
bench("Addition", T, iters):
|
||
x += y
|
||
|
||
proc subBench*(T: typedesc, iters: int) =
|
||
var x = rng.random_unsafe(T)
|
||
let y = rng.random_unsafe(T)
|
||
preventOptimAway(x)
|
||
bench("Substraction", T, iters):
|
||
x -= y
|
||
|
||
proc negBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(T)
|
||
bench("Negation", T, iters):
|
||
r.neg(x)
|
||
|
||
proc ccopyBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(T)
|
||
bench("Conditional Copy", T, iters):
|
||
r.ccopy(x, CtFalse)
|
||
|
||
proc div2Bench*(T: typedesc, iters: int) =
|
||
var x = rng.random_unsafe(T)
|
||
bench("Division by 2", T, iters):
|
||
x.div2()
|
||
|
||
proc mulBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(T)
|
||
let y = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Multiplication", T, iters):
|
||
r.prod(x, y)
|
||
|
||
proc sqrBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Squaring", T, iters):
|
||
r.square(x)
|
||
|
||
proc mul2xUnrBench*(T: typedesc, iters: int) =
|
||
var r: doublePrec(T)
|
||
let x = rng.random_unsafe(T)
|
||
let y = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Multiplication 2x unreduced", T, iters):
|
||
r.prod2x(x, y)
|
||
|
||
proc sqr2xUnrBench*(T: typedesc, iters: int) =
|
||
var r: doublePrec(T)
|
||
let x = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Squaring 2x unreduced", T, iters):
|
||
r.square2x(x)
|
||
|
||
proc rdc2xBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
var t: doublePrec(T)
|
||
rng.random_unsafe(t)
|
||
preventOptimAway(r)
|
||
bench("Redc 2x", T, iters):
|
||
r.redc2x(t)
|
||
|
||
proc sumprodBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let a = rng.random_unsafe(T)
|
||
let b = rng.random_unsafe(T)
|
||
let u = rng.random_unsafe(T)
|
||
let v = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Linear combination", T, iters):
|
||
r.sumprod([a, b], [u, v])
|
||
|
||
proc toBigBench*(T: typedesc, iters: int) =
|
||
var r: matchingBigInt(T.C)
|
||
let x = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("BigInt <- field conversion", T, iters):
|
||
r.fromField(x)
|
||
|
||
proc toFieldBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(matchingBigInt(T.C))
|
||
preventOptimAway(r)
|
||
bench("BigInt -> field conversion", T, iters):
|
||
r.fromBig(x)
|
||
|
||
proc invBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let x = rng.random_unsafe(T)
|
||
preventOptimAway(r)
|
||
bench("Inversion (constant-time)", T, iters):
|
||
r.inv(x)
|
||
|
||
proc isSquareBench*(T: typedesc, iters: int) =
|
||
let x = rng.random_unsafe(T)
|
||
bench("isSquare (constant-time)", T, iters):
|
||
let qrt = x.isSquare()
|
||
|
||
proc sqrtBench*(T: typedesc, iters: int) =
|
||
let x = rng.random_unsafe(T)
|
||
|
||
const algoType = block:
|
||
when T.C.has_P_3mod4_primeModulus():
|
||
"p ≡ 3 (mod 4)"
|
||
elif T.C.has_P_5mod8_primeModulus():
|
||
"p ≡ 5 (mod 8)"
|
||
else:
|
||
"Tonelli-Shanks"
|
||
const addchain = block:
|
||
when T.C.hasSqrtAddchain() or T.C.hasTonelliShanksAddchain():
|
||
"with addition chain"
|
||
else:
|
||
"without addition chain"
|
||
const desc = "Square Root (constant-time " & algoType & " " & addchain & ")"
|
||
bench(desc, T, iters):
|
||
var r = x
|
||
discard r.sqrt_if_square()
|
||
|
||
proc sqrtRatioBench*(T: typedesc, iters: int) =
|
||
var r: T
|
||
let u = rng.random_unsafe(T)
|
||
let v = rng.random_unsafe(T)
|
||
bench("Fused SquareRoot+Division+isSquare sqrt(u/v)", T, iters):
|
||
let isSquare = r.sqrt_ratio_if_square(u, v)
|
||
|
||
proc powBench*(T: typedesc, iters: int) =
|
||
let x = rng.random_unsafe(T)
|
||
let exponent = rng.random_unsafe(BigInt[T.C.getCurveOrderBitwidth()])
|
||
bench("Exp curve order (constant-time) - " & $exponent.bits & "-bit", T, iters):
|
||
var r = x
|
||
r.pow(exponent)
|
||
|
||
proc powUnsafeBench*(T: typedesc, iters: int) =
|
||
let x = rng.random_unsafe(T)
|
||
let exponent = rng.random_unsafe(BigInt[T.C.getCurveOrderBitwidth()])
|
||
bench("Exp curve order (Leak exponent bits) - " & $exponent.bits & "-bit", T, iters):
|
||
var r = x
|
||
r.powUnsafeExponent(exponent)
|