mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-10 11:05:53 +00:00
a2f46f77b7
* Implement a Sage codegenerator for frobenius constants * Sage codegen for pairings * Autogen of endomorphism acceleration constants * The autogen fixed a copy-paste bug in lattice decomposition. We can use conditional negation now and save an add+dbl in scalar mul * small fixes * sage code for square root bls12-377 is not old * readme updates * Provide test suggestions for derive_frobenius * indentation + add equation form to sage * Sage test vector generator * Use the json vectors - includes type system workaround: generic sandwich https://github.com/nim-lang/Nim/issues/11225 - converting NimNode to typedesc: https://github.com/nim-lang/Nim/issues/6785 * Delete old sage code * Install nim-serialization and nim-json-serialization in CI * CI nimble install force yes
290 lines
8.7 KiB
Python
290 lines
8.7 KiB
Python
#!/usr/bin/sage
|
||
# vim: syntax=python
|
||
# vim: set ts=2 sw=2 et:
|
||
|
||
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
# ############################################################
|
||
#
|
||
# Endomorphism acceleration constants
|
||
#
|
||
# ############################################################
|
||
|
||
# Imports
|
||
# ---------------------------------------------------------
|
||
|
||
import os
|
||
import inspect, textwrap
|
||
|
||
# Working directory
|
||
# ---------------------------------------------------------
|
||
|
||
os.chdir(os.path.dirname(__file__))
|
||
|
||
# Sage imports
|
||
# ---------------------------------------------------------
|
||
# Accelerate arithmetic by accepting probabilistic proofs
|
||
from sage.structure.proof.all import arithmetic
|
||
arithmetic(False)
|
||
|
||
load('curves.sage')
|
||
|
||
# Utilities
|
||
# ---------------------------------------------------------
|
||
|
||
def fp2_to_hex(a):
|
||
v = vector(a)
|
||
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
|
||
|
||
def pretty_print_lattice(Lat):
|
||
print('Lattice:')
|
||
latHex = [['0x' + x.hex() if x >= 0 else '-0x' + (-x).hex() for x in vec] for vec in Lat]
|
||
maxlen = max([len(cell) for row in latHex for cell in row])
|
||
for row in latHex:
|
||
row = ' '.join(cell.rjust(maxlen + 2) for cell in row)
|
||
print(row)
|
||
|
||
def pretty_print_babai(Basis):
|
||
print('Babai:')
|
||
for i, v in enumerate(Basis):
|
||
if v < 0:
|
||
print(f' 𝛼\u0305{i}: -0x{Integer(int(-v)).hex()}')
|
||
else:
|
||
print(f' 𝛼\u0305{i}: 0x{Integer(int(v)).hex()}')
|
||
|
||
def derive_lattice(r, lambdaR, m):
|
||
lat = Matrix(matrix.identity(m))
|
||
lat[0, 0] = r
|
||
for i in range(1, m):
|
||
lat[i, 0] = -lambdaR^i
|
||
|
||
return lat.LLL()
|
||
|
||
def derive_babai(r, lattice, m):
|
||
basis = m * [0]
|
||
basis[0] = r
|
||
|
||
ahat = vector(basis) * lattice.inverse()
|
||
v = int(r).bit_length()
|
||
v = int(((v + 64 - 1) // 64) * 64)
|
||
|
||
return [(a << v) // r for a in ahat]
|
||
|
||
# TODO: maximum infinity norm
|
||
|
||
# G1 Endomorphism
|
||
# ---------------------------------------------------------
|
||
|
||
def check_cubic_root_endo(G1, Fp, r, cofactor, lambdaR, phiP):
|
||
## Check the Endomorphism for p mod 3 == 1
|
||
## Endomorphism can be field multiplication by one of the non-trivial cube root of unity 𝜑
|
||
## Rationale:
|
||
## curve equation is y² = x³ + b, and y² = (x𝜑)³ + b <=> y² = x³ + b (with 𝜑³ == 1) so we are still on the curve
|
||
## this means that multiplying by 𝜑 the x-coordinate is equivalent to a scalar multiplication by some λᵩ
|
||
## with λᵩ² + λᵩ + 1 ≡ 0 (mod r) and 𝜑² + 𝜑 + 1 ≡ 0 (mod p), see below.
|
||
## Hence we have a 2 dimensional decomposition of the scalar multiplication
|
||
## i.e. For any [s]P, we can find a corresponding [k1]P + [k2][λᵩ]P with [λᵩ]P being a simple field multiplication by 𝜑
|
||
## Finding cube roots:
|
||
## x³−1=0 <=> (x−1)(x²+x+1) = 0, if x != 1, x solves (x²+x+1) = 0 <=> x = (-1±√3)/2
|
||
|
||
assert phiP^3 == Fp(1)
|
||
assert lambdaR^3 % r == 1
|
||
|
||
Prand = G1.random_point()
|
||
P = Prand * cofactor
|
||
assert P != G1([0, 1, 0])
|
||
|
||
(Px, Py, Pz) = P
|
||
|
||
Qendo = G1([Px*phiP, Py, Pz])
|
||
Qlambda = lambdaR * P
|
||
|
||
assert P != Qendo
|
||
assert P != Qlambda
|
||
|
||
assert Qendo == Qlambda
|
||
print('Endomorphism OK')
|
||
|
||
def genCubicRootEndo(curve_name, curve_config):
|
||
p = curve_config[curve_name]['field']['modulus']
|
||
r = curve_config[curve_name]['field']['order']
|
||
b = curve_config[curve_name]['curve']['b']
|
||
|
||
Fp = GF(p)
|
||
G1 = EllipticCurve(Fp, [0, b])
|
||
cofactor = G1.order() // r
|
||
|
||
(phi1, phi2) = (Fp(root) for root in Fp(1).nth_root(3, all=True) if root != 1)
|
||
(lambda1, lambda2) = (GF(r)(root) for root in GF(r)(1).nth_root(3, all=True) if root != 1)
|
||
|
||
print('𝜑1 (mod p): 0x' + Integer(phi1).hex())
|
||
print('λᵩ1 (mod r): 0x' + Integer(lambda1).hex())
|
||
print('𝜑2 (mod p): 0x' + Integer(phi2).hex())
|
||
print('λᵩ2 (mod r): 0x' + Integer(lambda2).hex())
|
||
|
||
# TODO: is there a better way than spray-and-pray?
|
||
# TODO: Should we maximize or minimize lambda
|
||
# to maximize/minimize the scalar norm?
|
||
# TODO: Or is there a way to ensure
|
||
# that the Babai basis is mostly positive?
|
||
if lambda1 < lambda2:
|
||
lambda1, lambda2 = lambda2, lambda1
|
||
|
||
try:
|
||
check_cubic_root_endo(G1, Fp, r, cofactor, int(lambda1), phi1)
|
||
except:
|
||
print('Failure with:')
|
||
print(' 𝜑 (mod p): 0x' + Integer(phi1).hex())
|
||
print(' λᵩ (mod r): 0x' + Integer(lambda1).hex())
|
||
phi1, phi2 = phi2, phi1
|
||
check_cubic_root_endo(G1, Fp, r, cofactor, int(lambda1), phi1)
|
||
finally:
|
||
print('Success with:')
|
||
print(' 𝜑 (mod p): 0x' + Integer(phi1).hex())
|
||
print(' λᵩ (mod r): 0x' + Integer(lambda1).hex())
|
||
|
||
lattice = derive_lattice(r, lambda1, 2)
|
||
pretty_print_lattice(lattice)
|
||
|
||
babai = derive_babai(r, lattice, 2)
|
||
pretty_print_babai(babai)
|
||
|
||
return phi1, lattice, babai
|
||
|
||
# G2 Endomorphism
|
||
# ---------------------------------------------------------
|
||
|
||
def genPsiEndo(curve_name, curve_config):
|
||
t = curve_config[curve_name]['field']['trace']
|
||
r = curve_config[curve_name]['field']['order']
|
||
k = curve_config[curve_name]['tower']['embedding_degree']
|
||
|
||
# Decomposition factor depends on the embedding degree
|
||
m = CyclotomicField(k).degree()
|
||
# λψ is the trace of Frobenius - 1
|
||
lambda_psi = t - 1
|
||
|
||
lattice = derive_lattice(r, lambda_psi, m)
|
||
pretty_print_lattice(lattice)
|
||
|
||
babai = derive_babai(r, lattice, m)
|
||
pretty_print_babai(babai)
|
||
|
||
return lattice, babai
|
||
|
||
# Dump
|
||
# ---------------------------------------------------------
|
||
|
||
def dumpLattice(lattice):
|
||
result = ' # (BigInt, isNeg)\n'
|
||
lastRow = lattice.nrows() - 1
|
||
lastCol = lattice.ncols() - 1
|
||
|
||
for rowID, row in enumerate(lattice):
|
||
for colID, val in enumerate(row):
|
||
result += ' '
|
||
result += '(' if colID == 0 else ' '
|
||
result += f'(BigInt[{max(1, int(abs(val)).bit_length())}].fromHex"0x{Integer(int(abs(val))).hex()}", '
|
||
result += ('false' if val >= 0 else 'true') + ')'
|
||
result += ')' if colID == lastCol else ''
|
||
result += ',\n' if (rowID != lastRow or colID != lastCol) else '\n'
|
||
|
||
return result
|
||
|
||
def dumpBabai(vec):
|
||
result = ' # (BigInt, isNeg)\n'
|
||
lastRow = len(vec) - 1
|
||
|
||
for rowID, val in enumerate(vec):
|
||
result += ' '
|
||
result += f'(BigInt[{max(1, int(abs(val)).bit_length())}].fromHex"0x{Integer(int(abs(val))).hex()}", '
|
||
result += ('false' if val >= 0 else 'true') + ')'
|
||
result += ',\n' if rowID != lastRow else '\n'
|
||
|
||
return result
|
||
|
||
def dumpConst(name, inner):
|
||
result = f'const {name}* = (\n'
|
||
result += inner
|
||
result += ')\n'
|
||
|
||
return result
|
||
|
||
# CLI
|
||
# ---------------------------------------------------------
|
||
|
||
if __name__ == "__main__":
|
||
# Usage
|
||
# BLS12-381
|
||
# sage sage/derive_pairing.sage BLS12_381
|
||
|
||
from argparse import ArgumentParser
|
||
|
||
parser = ArgumentParser()
|
||
parser.add_argument("curve",nargs="+")
|
||
args = parser.parse_args()
|
||
|
||
curve = args.curve[0]
|
||
|
||
if curve not in Curves:
|
||
raise ValueError(
|
||
curve +
|
||
' is not one of the available curves: ' +
|
||
str(Curves.keys())
|
||
)
|
||
else:
|
||
print('\nPrecomputing G1 - 𝜑 (phi) cubic root endomorphism')
|
||
print('----------------------------------------------------\n')
|
||
cubeRootModP, g1lat, g1babai = genCubicRootEndo(curve, Curves)
|
||
print('\n\nPrecomputing G2 - ψ (Psi) - untwist-Frobenius-twist endomorphism')
|
||
print('----------------------------------------------------\n')
|
||
g2lat, g2babai = genPsiEndo(curve, Curves)
|
||
|
||
with open(f'{curve.lower()}_glv.nim', 'w') as f:
|
||
f.write(copyright())
|
||
f.write('\n\n')
|
||
f.write(inspect.cleandoc(f"""
|
||
import
|
||
../config/[curves, type_bigint, type_fp],
|
||
../io/[io_bigints, io_fields]
|
||
|
||
# {curve} G1
|
||
# ------------------------------------------------------------
|
||
"""))
|
||
f.write('\n\n')
|
||
f.write(inspect.cleandoc(f"""
|
||
const {curve}_cubicRootOfUnity_mod_p* =
|
||
Fp[{curve}].fromHex"0x{Integer(cubeRootModP).hex()}"
|
||
"""))
|
||
f.write('\n\n')
|
||
f.write(dumpConst(
|
||
f'{curve}_Lattice_G1',
|
||
dumpLattice(g1lat)
|
||
))
|
||
f.write('\n')
|
||
f.write(dumpConst(
|
||
f'{curve}_Babai_G1',
|
||
dumpBabai(g1babai)
|
||
))
|
||
f.write('\n\n')
|
||
f.write(inspect.cleandoc(f"""
|
||
# {curve} G2
|
||
# ------------------------------------------------------------
|
||
"""))
|
||
f.write('\n\n')
|
||
f.write(dumpConst(
|
||
f'{curve}_Lattice_G2',
|
||
dumpLattice(g2lat)
|
||
))
|
||
f.write('\n')
|
||
f.write(dumpConst(
|
||
f'{curve}_Babai_G2',
|
||
dumpBabai(g2babai)
|
||
))
|