constantine/tests/t_finite_fields.nim
Mamy Ratsimbazafy c312210878
Rework towering (#148)
* naive removal of out-of-place mul by non residue

* Use {.inline.} in a consistent manner across the codebase

* Handle aliasing for quadratic multiplication

* reorg optimization

* Handle aliasing for quadratic squaring

* handle aliasing in mul_sparse_complex_by_0y

* Rework multiplication by nonresidue, assume tower and twist use same non-residue

* continue rework

* continue on non-residues

* Remove "NonResidue *" calls

* handle aliasing in Chung-Hasan SQR2

* Handla aliasing in Chung-Hasan SQR3

* Use one less temporary in Chung Hasan sqr2

* handle aliasing in cubic extensions

* merge extension tower in the same file to reduce duplicate proc and allow better inlining

* handle aliasing in cubic inversion

* drop out-of-place proc from BigInt and finite fields as well

* less copies in line_projective

* remove a copy in fp12 by lines
2021-02-06 16:28:38 +01:00

321 lines
8.1 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import std/unittest,
../constantine/arithmetic,
../constantine/io/io_fields,
../constantine/config/curves
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
echo "\n------------------------------------------------------\n"
proc main() =
suite "Basic arithmetic over finite fields":
test "Addition mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(90'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
90'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(21'u32)
z.fromUint(0'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(22'u32)
z.fromUint(1'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
1'u64 == cast[uint64](x_bytes)
test "Substraction mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(70'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
70'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(80'u32)
z.fromUint(0'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(81'u32)
z.fromUint(100'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](x_bytes)
test "Multiplication mod 101":
block:
var x, y, z, r: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](r_bytes)
block:
var x, y, z, r: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(11'u32)
z.fromUint(9'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
9'u64 == cast[uint64](r_bytes)
test "Addition mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(90'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 90'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(1'u32)
z.fromUint(0'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 0'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(2'u64)
z.fromUint(1'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64
test "Substraction mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(70'u64)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 70'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(0'u64)
y.fromUint(1'u64)
z.fromUint(1'u64 shl 61 - 2)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64 shl 61 - 2
test "Multiplication mod 2^61 - 1":
block:
var x, y, z, r: Fp[Mersenne61]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
cast[uint64](r_bytes) == 100'u64
block:
var x, y, z, r: Fp[Mersenne61]
x.fromUint(1'u32 shl 31)
y.fromUint(1'u32 shl 31)
z.fromUint(2'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
new_r == 2'u64
main()
proc largeField() =
suite "Large field":
test "Negate 0 returns 0 (unique Montgomery repr)":
# https://github.com/mratsim/constantine/issues/136
# and https://github.com/mratsim/constantine/issues/114
# The assembly implementation of neg didn't check
# after M-a if a was zero and so while in mod M
# M ≡ 0 (mod M), the `==` doesn't support unreduced representation.
var a: Fp[BN254_Snarks]
var r {.noInit.}: Fp[BN254_Snarks]
r.neg(a)
check: bool r.isZero()
largeField()