constantine/benchmarks/bench_elliptic_template.nim
Mamy Ratsimbazafy 986245b5c1
Jacobian coordinates (#95)
* Add projective-> affine bench

* Add conditional copy and div2 benches

* Fp4 benchmarks

* Constant-time Jacobian addition

* Jacobian doubling

* Use a simpler Add+Dbl complete formula

* Update tests

* Fix conditional negate

* Rollaback complete addition, we were only handling curve coef a == 0
2020-10-02 00:01:09 +02:00

223 lines
8.0 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Benchmark of elliptic curves
#
# ############################################################
import
# Internals
../constantine/config/[curves, common],
../constantine/arithmetic,
../constantine/io/io_bigints,
../constantine/elliptic/[ec_shortweierstrass_affine, ec_shortweierstrass_projective, ec_scalar_mul, ec_endomorphism_accel],
# Helpers
../helpers/[prng_unsafe, static_for],
./platforms,
# Standard library
std/[monotimes, times, strformat, strutils, macros],
# Reference unsafe scalar multiplication
../tests/support/ec_reference_scalar_mult
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "bench xoshiro512** seed: ", seed
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
when defined(gcc):
echo "\nCompiled with GCC"
elif defined(clang):
echo "\nCompiled with Clang"
elif defined(vcc):
echo "\nCompiled with MSVC"
elif defined(icc):
echo "\nCompiled with ICC"
else:
echo "\nCompiled with an unknown compiler"
echo "Optimization level => "
echo " no optimization: ", not defined(release)
echo " release: ", defined(release)
echo " danger: ", defined(danger)
echo " inline assembly: ", UseASM_X86_64
when (sizeof(int) == 4) or defined(Constantine32):
echo "⚠️ Warning: using Constantine with 32-bit limbs"
else:
echo "Using Constantine with 64-bit limbs"
when SupportsCPUName:
echo "Running on ", cpuName(), ""
when SupportsGetTicks:
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
echo "\n=================================================================================================================\n"
proc separator*() =
echo "-".repeat(177)
proc report(op, elliptic: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
let ns = inNanoseconds((stop-start) div iters)
let throughput = 1e9 / float64(ns)
when SupportsGetTicks:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
else:
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
proc notes*() =
echo "Notes:"
echo " - Compilers:"
echo " Compilers are severely limited on multiprecision arithmetic."
echo " Constantine compile-time assembler is used by default (nimble bench_fp)."
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
echo " GCC also seems to have issues with large temporaries and register spilling."
echo " This is somewhat alleviated by Constantine compile-time assembler."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc\" or \"nimble bench_ec_g1_clang\"."
echo " Bench on specific compiler with assembler: \"nimble bench_ec_g1_gcc_noasm\" or \"nimble bench_ec_g1_clang_noasm\"."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
macro fixEllipticDisplay(T: typedesc): untyped =
# At compile-time, enums are integers and their display is buggy
# we get the Curve ID instead of the curve name.
let instantiated = T.getTypeInst()
var name = $instantiated[1][0] # EllipticEquationFormCoordinates
let fieldName = $instantiated[1][1][0]
let curveName = $Curve(instantiated[1][1][1].intVal)
name.add "[" & fieldName & "[" & curveName & "]]"
result = newLit name
template bench(op: string, T: typedesc, iters: int, body: untyped): untyped =
let start = getMonotime()
when SupportsGetTicks:
let startClk = getTicks()
for _ in 0 ..< iters:
body
when SupportsGetTicks:
let stopClk = getTicks()
let stop = getMonotime()
when not SupportsGetTicks:
let startClk = -1'i64
let stopClk = -1'i64
report(op, fixEllipticDisplay(T), start, stop, startClk, stopClk, iters)
proc addBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
let Q = rng.random_unsafe(T)
bench("EC Add " & G1_or_G2, T, iters):
r.sum(P, Q)
proc mixedAddBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
let Q = rng.random_unsafe(T)
var Qaff: ECP_ShortW_Aff[T.F]
Qaff.affineFromProjective(Q)
bench("EC Mixed Addition " & G1_or_G2, T, iters):
r.madd(P, Qaff)
proc doublingBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T)
bench("EC Double " & G1_or_G2, T, iters):
r.double(P)
proc affFromProjBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: ECP_ShortW_Aff[T.F]
let P = rng.random_unsafe(T)
bench("EC Projective to Affine " & G1_or_G2, T, iters):
r.affineFromProjective(P)
proc affFromJacBench*(T: typedesc, iters: int) =
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: ECP_ShortW_Aff[T.F]
let P = rng.random_unsafe(T)
bench("EC Jacobian to Affine " & G1_or_G2, T, iters):
r.affineFromJacobian(P)
proc scalarMulGenericBench*(T: typedesc, window: static int, iters: int) =
const bits = T.F.C.getCurveOrderBitwidth()
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T) # TODO: clear cofactor
let exponent = rng.random_unsafe(BigInt[bits])
bench("EC ScalarMul Generic " & G1_or_G2 & " (window = " & $window & ", scratchsize = " & $(1 shl window) & ')', T, iters):
r = P
r.scalarMulGeneric(exponent, window)
proc scalarMulEndo*(T: typedesc, iters: int) =
const bits = T.F.C.getCurveOrderBitwidth()
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T) # TODO: clear cofactor
let exponent = rng.random_unsafe(BigInt[bits])
bench("EC ScalarMul " & G1_or_G2 & " (endomorphism accelerated)", T, iters):
r = P
r.scalarMulEndo(exponent)
proc scalarMulEndoWindow*(T: typedesc, iters: int) =
const bits = T.F.C.getCurveOrderBitwidth()
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T) # TODO: clear cofactor
let exponent = rng.random_unsafe(BigInt[bits])
bench("EC ScalarMul Window-2 " & G1_or_G2 & " (endomorphism accelerated)", T, iters):
r = P
when T.F is Fp:
r.scalarMulGLV_m2w2(exponent)
else:
{.error: "Not implemented".}
proc scalarMulUnsafeDoubleAddBench*(T: typedesc, iters: int) =
const bits = T.F.C.getCurveOrderBitwidth()
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
var r {.noInit.}: T
let P = rng.random_unsafe(T) # TODO: clear cofactor
let exponent = rng.random_unsafe(BigInt[bits])
bench("EC ScalarMul " & G1_or_G2 & " (unsafe reference DoubleAdd)", T, iters):
r = P
r.unsafe_ECmul_double_add(exponent)