constantine/tests/t_io_fields.nim
Mamy Ratsimbazafy d97bc9b61c
Assembly backend (#69)
* Proof-of-Concept Assembly code generator

* Tag inline per procedure so we can easily track the tradeoff on tower fields

* Implement Assembly for modular addition (but very curious off-by-one)

* Fix off-by one for moduli with non msb set

* Stash (super fast) alternative but still off by carry

* Fix GCC optimizing ASM away

* Save 1 register to allow compiling for BLS12-381 (in the GMP test)

* The compiler cannot find enough registers if the ASM file is not compiled with -O3

* Add modsub

* Add field negation

* Implement no-carry Assembly optimized field multiplication

* Expose UseX86ASM to the EC benchmark

* omit frame pointer to save registers instead of hardcoding -O3. Also ensure early clobber constraints for Clang

* Prepare for assembly fallback

* Implement fallback for CPU that don't support ADX and BMI2

* Add CPU runtime detection

* Update README closes #66

* Remove commented out code
2020-07-24 22:02:30 +02:00

160 lines
5.1 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import std/[unittest, times],
../constantine/io/[io_bigints, io_fields],
../constantine/config/curves,
../constantine/config/common,
../constantine/arithmetic,
../helpers/prng_unsafe
# Random seed for reproducibility
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_io_fields xoshiro512** seed: ", seed
proc main() =
suite "IO - Finite fields" & " [" & $WordBitwidth & "-bit mode]":
test "Parsing and serializing round-trip on uint64":
# 101 ---------------------------------
block:
# "Little-endian" - 0
let x = BaseType(0)
let x_bytes = cast[array[sizeof(BaseType), byte]](x)
var f: Fp[Fake101]
f.fromUint(x)
var r_bytes: array[sizeof(BaseType), byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
block:
# "Little-endian" - 1
let x = BaseType(1)
let x_bytes = cast[array[sizeof(BaseType), byte]](x)
var f: Fp[Fake101]
f.fromUint(x)
var r_bytes: array[sizeof(BaseType), byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
# Mersenne 61 ---------------------------------
block:
# "Little-endian" - 0
let x = 0'u64
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne61]
f.fromUint(x)
var r_bytes: array[8, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
block:
# "Little-endian" - 1
let x = 1'u64
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne61]
f.fromUint(x)
var r_bytes: array[8, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
block:
# "Little-endian" - 2^31
let x = 1'u64 shl 31
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne61]
f.fromUint(x)
var r_bytes: array[8, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
block:
# "Little-endian" - 2^32
let x = 1'u64 shl 32
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne61]
f.fromUint(x)
var r_bytes: array[8, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes
# Mersenne 127 ---------------------------------
block:
# "Little-endian" - 2^63
let x = 1'u64 shl 63
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne127]
f.fromUint(x)
var r_bytes: array[16, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes[0 ..< 8]
block: # "Little-endian" - single random
let x = rng.random_unsafe(uint64)
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne127]
f.fromUint(x)
var r_bytes: array[16, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes[0 ..< 8]
block: # "Little-endian" - 10 random cases
for _ in 0 ..< 10:
let x = rng.random_unsafe(uint64)
let x_bytes = cast[array[8, byte]](x)
var f: Fp[Mersenne127]
f.fromUint(x)
var r_bytes: array[16, byte]
exportRawUint(r_bytes, f, littleEndian)
check: x_bytes == r_bytes[0 ..< 8]
test "Round trip on large constant":
block: # 2^126
const p = "0x40000000000000000000000000000000"
let x = Fp[Mersenne127].fromBig BigInt[127].fromHex(p)
let hex = x.toHex(bigEndian)
check: p == hex
test "Round trip on prime field of NIST P256 (secp256r1) curve":
block: # 2^126
const p = "0x0000000000000000000000000000000040000000000000000000000000000000"
let x = Fp[P256].fromBig BigInt[256].fromHex(p)
let hex = x.toHex(bigEndian)
check: p == hex
test "Round trip on prime field of BN254 Snarks curve":
block: # 2^126
const p = "0x0000000000000000000000000000000040000000000000000000000000000000"
let x = Fp[BN254_Snarks].fromBig BigInt[254].fromHex(p)
let hex = x.toHex(bigEndian)
check: p == hex
test "Round trip on prime field of BLS12_381 curve":
block: # 2^126
const p = "0x000000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000"
let x = Fp[BLS12_381].fromBig BigInt[381].fromHex(p)
let hex = x.toHex(bigEndian)
check: p == hex
main()