mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-15 21:44:15 +00:00
53f9708c2b
* Point decoding: optimized sqrt for p ≡ 5 (mod 8) (Curve25519) * Implement fused sqrt(u/v) for twisted edwards point deserialization * Introduce twisted edwards affine * Allow declaration of curve field elements (and fight against recursive dependencies * Twisted edwards group law + tests * Add support for jubjub and bandersnatch #162 * test twisted edwards scalar mul
198 lines
5.9 KiB
Nim
198 lines
5.9 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
import
|
||
# Standard library
|
||
std/[tables, unittest, times],
|
||
# Internal
|
||
../constantine/[arithmetic, primitives],
|
||
../constantine/io/[io_fields],
|
||
../constantine/config/[curves, common],
|
||
# Test utilities
|
||
../helpers/prng_unsafe
|
||
|
||
|
||
const Iters = 8
|
||
|
||
var rng: RngState
|
||
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
||
rng.seed(seed)
|
||
echo "\n------------------------------------------------------\n"
|
||
echo "test_finite_fields_sqrt xoshiro512** seed: ", seed
|
||
|
||
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
|
||
|
||
proc exhaustiveCheck(C: static Curve, modulus: static int) =
|
||
test "Exhaustive square root check for " & $Curve(C):
|
||
var squares_to_roots: Table[uint16, set[uint16]]
|
||
|
||
# Create all squares
|
||
# -------------------------
|
||
for i in 0'u16 ..< modulus:
|
||
var a{.noInit.}: Fp[C]
|
||
a.fromUint(i)
|
||
|
||
a.square()
|
||
|
||
var r_bytes: array[8, byte]
|
||
r_bytes.exportRawUint(a, cpuEndian)
|
||
let r = uint16(cast[uint64](r_bytes))
|
||
|
||
squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i)
|
||
|
||
# From Euler's criterion
|
||
# there is exactly (p-1)/2 squares in 𝔽p* (without 0)
|
||
# and so (p-1)/2 + 1 in 𝔽p (with 0)
|
||
check: squares_to_roots.len == (modulus-1) div 2 + 1
|
||
|
||
# Check squares
|
||
# -------------------------
|
||
for i in 0'u16 ..< modulus:
|
||
var a{.noInit.}: Fp[C]
|
||
a.fromUint(i)
|
||
|
||
if i in squares_to_roots:
|
||
var a2 = a
|
||
check:
|
||
bool a.isSquare()
|
||
bool a.sqrt_if_square()
|
||
|
||
# 2 different code paths have the same result
|
||
# (despite 2 square roots existing per square)
|
||
a2.sqrt()
|
||
check: bool(a == a2)
|
||
|
||
var r_bytes: array[8, byte]
|
||
r_bytes.exportRawUint(a, cpuEndian)
|
||
let r = uint16(cast[uint64](r_bytes))
|
||
|
||
# r is one of the 2 square roots of `i`
|
||
check: r in squares_to_roots[i]
|
||
|
||
else:
|
||
let a2 = a
|
||
|
||
check:
|
||
bool not a.isSquare()
|
||
bool not a.sqrt_if_square()
|
||
|
||
template testSqrtImpl(a: untyped): untyped {.dirty.} =
|
||
var na{.noInit.}: typeof(a)
|
||
na.neg(a)
|
||
|
||
var a2 = a
|
||
var na2 = na
|
||
a2.square()
|
||
na2.square()
|
||
check:
|
||
bool a2 == na2
|
||
bool a2.isSquare()
|
||
|
||
var r, s = a2
|
||
r.sqrt()
|
||
let ok = s.sqrt_if_square()
|
||
check:
|
||
bool ok
|
||
bool(r == s)
|
||
bool(r == a or r == na)
|
||
|
||
proc randomSqrtCheck(C: static Curve) =
|
||
test "Random square root check for " & $Curve(C):
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random_unsafe(Fp[C])
|
||
testSqrtImpl(a)
|
||
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.randomHighHammingWeight(Fp[C])
|
||
testSqrtImpl(a)
|
||
|
||
for _ in 0 ..< Iters:
|
||
let a = rng.random_long01Seq(Fp[C])
|
||
testSqrtImpl(a)
|
||
|
||
template testSqrtRatioImpl(u, v: untyped): untyped {.dirty.} =
|
||
var u_over_v, r{.noInit.}: typeof(v)
|
||
u_over_v.inv(v)
|
||
u_over_v *= u
|
||
|
||
let qr = r.sqrt_ratio_if_square(u, v)
|
||
check: bool(qr) == bool(u_over_v.isSquare())
|
||
|
||
if bool(qr):
|
||
r.square()
|
||
check: bool(r == u_over_v)
|
||
|
||
proc randomSqrtRatioCheck(C: static Curve) =
|
||
test "Random square root check for " & $Curve(C):
|
||
for _ in 0 ..< Iters:
|
||
let u = rng.random_unsafe(Fp[C])
|
||
let v = rng.random_unsafe(Fp[C])
|
||
testSqrtRatioImpl(u, v)
|
||
|
||
for _ in 0 ..< Iters:
|
||
let u = rng.randomHighHammingWeight(Fp[C])
|
||
let v = rng.randomHighHammingWeight(Fp[C])
|
||
testSqrtRatioImpl(u, v)
|
||
|
||
for _ in 0 ..< Iters:
|
||
let u = rng.random_long01Seq(Fp[C])
|
||
let v = rng.random_long01Seq(Fp[C])
|
||
testSqrtRatioImpl(u, v)
|
||
|
||
proc main() =
|
||
suite "Modular square root" & " [" & $WordBitwidth & "-bit mode]":
|
||
exhaustiveCheck Fake103, 103
|
||
# exhaustiveCheck Fake10007, 10007
|
||
# exhaustiveCheck Fake65519, 65519
|
||
randomSqrtCheck BN254_Nogami
|
||
randomSqrtCheck BN254_Snarks
|
||
randomSqrtCheck BLS12_377 # p ≢ 3 (mod 4)
|
||
randomSqrtCheck BLS12_381
|
||
randomSqrtCheck BW6_761
|
||
randomSqrtCheck Curve25519
|
||
randomSqrtCheck Jubjub
|
||
randomSqrtCheck Bandersnatch
|
||
|
||
suite "Modular sqrt(u/v)" & " [" & $WordBitwidth & "-bit mode]":
|
||
randomSqrtRatioCheck Curve25519
|
||
randomSqrtRatioCheck Jubjub
|
||
randomSqrtRatioCheck Bandersnatch
|
||
|
||
suite "Modular square root - 32-bit bugs highlighted by property-based testing " & " [" & $WordBitwidth & "-bit mode]":
|
||
# test "FKM12_447 - #30": - Deactivated, we don't support the curve as no one uses it.
|
||
# var a: Fp[FKM12_447]
|
||
# a.fromHex"0x406e5e74ee09c84fa0c59f2db3ac814a4937e2f57ecd3c0af4265e04598d643c5b772a6549a2d9b825445c34b8ba100fe8d912e61cfda43d"
|
||
# a.square()
|
||
# check: bool a.isSquare()
|
||
|
||
test "Fused modular square root on 32-bit - inconsistent with isSquare - #42":
|
||
var a: Fp[BLS12_381]
|
||
a.fromHex"0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51"
|
||
check:
|
||
bool(not a.isSquare())
|
||
bool(not a.sqrt_if_square())
|
||
|
||
test "Fused modular square root on 32-bit - inconsistent with isSquare - #43":
|
||
var a: Fp[BLS12_381]
|
||
a.fromHex"0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3"
|
||
check:
|
||
bool(not a.isSquare())
|
||
bool(not a.sqrt_if_square())
|
||
|
||
test "Fp[2^127 - 1] - #61":
|
||
var a: Fp[Mersenne127]
|
||
a.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
|
||
testSqrtImpl(a)
|
||
|
||
test "Fp[2^127 - 1] - #62":
|
||
var a: Fp[Mersenne127]
|
||
a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
|
||
testSqrtImpl(a)
|
||
|
||
main()
|