mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-15 21:44:15 +00:00
bea798e27c
* add more Fp tests for Twisted Edwards curves * add fused sqrt+division bench * Significant fused sqrt+division improvement for any prime field over algorithm described in "High-Speed High-Security Signature", Bernstein et al, p15 "Fast decompression", https://ed25519.cr.yp.to/ed25519-20110705.pdf * Activate secp256k1 field benches + spring renaming of field multiplication * addition chains for inversion and sqrt of Curve25519 * Make isSquare use addition chains * add double-prec mul/square bench for <256-bit prime fields.
294 lines
8.4 KiB
Nim
294 lines
8.4 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
import
|
|
# Standard library
|
|
std/[unittest, times],
|
|
# Internal
|
|
../constantine/arithmetic,
|
|
../constantine/io/[io_bigints, io_fields],
|
|
../constantine/config/[curves, common, type_bigint],
|
|
# Test utilities
|
|
../helpers/prng_unsafe
|
|
|
|
const Iters = 24
|
|
|
|
var rng: RngState
|
|
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
|
rng.seed(seed)
|
|
echo "\n------------------------------------------------------\n"
|
|
echo "test_finite_fields_mulsquare xoshiro512** seed: ", seed
|
|
|
|
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
|
|
|
|
proc sanity(C: static Curve) =
|
|
test "Squaring 0,1,2 with "& $Curve(C) & " [FastSquaring = " & $(Fp[C].getSpareBits() >= 2) & "]":
|
|
block: # 0² mod
|
|
var n: Fp[C]
|
|
|
|
n.fromUint(0'u32)
|
|
let expected = n
|
|
|
|
# Out-of-place
|
|
var r: Fp[C]
|
|
r.square(n)
|
|
# In-place
|
|
n.square()
|
|
|
|
check:
|
|
bool(r == expected)
|
|
bool(n == expected)
|
|
|
|
block: # 1² mod
|
|
var n: Fp[C]
|
|
|
|
n.fromUint(1'u32)
|
|
let expected = n
|
|
|
|
# Out-of-place
|
|
var r: Fp[C]
|
|
r.square(n)
|
|
# In-place
|
|
n.square()
|
|
|
|
check:
|
|
bool(r == expected)
|
|
bool(n == expected)
|
|
|
|
block: # 2² mod
|
|
var n, expected: Fp[C]
|
|
|
|
n.fromUint(2'u32)
|
|
expected.fromUint(4'u32)
|
|
|
|
# Out-of-place
|
|
var r: Fp[C]
|
|
r.square(n)
|
|
# In-place
|
|
n.square()
|
|
|
|
check:
|
|
bool(r == expected)
|
|
bool(n == expected)
|
|
|
|
proc mainSanity() =
|
|
suite "Modular squaring is consistent with multiplication on special elements" & " [" & $WordBitwidth & "-bit mode]":
|
|
sanity Fake101
|
|
sanity Mersenne61
|
|
sanity Mersenne127
|
|
sanity P224 # P224 uses the fast-path with 64-bit words and the slow path with 32-bit words
|
|
sanity P256
|
|
sanity Secp256k1
|
|
sanity BLS12_381
|
|
sanity Curve25519
|
|
sanity Bandersnatch
|
|
|
|
mainSanity()
|
|
|
|
proc mainSelectCases() =
|
|
suite "Modular Squaring: selected tricky cases" & " [" & $WordBitwidth & "-bit mode]":
|
|
test "P-256 [FastSquaring = " & $(Fp[P256].getSpareBits() >= 2) & "]":
|
|
block:
|
|
# Triggered an issue in the (t[N+1], t[N]) = t[N] + (A1, A0)
|
|
# between the squaring and reduction step, with t[N+1] and A1 being carry bits.
|
|
var a: Fp[P256]
|
|
a.fromHex"0xa0da36b4885df98997ee89a22a7ceb64fa431b2ecc87342fc083587da3d6ebc7"
|
|
|
|
var r_mul, r_sqr: Fp[P256]
|
|
|
|
r_mul.prod(a, a)
|
|
r_sqr.square(a)
|
|
|
|
doAssert bool(r_mul == r_sqr)
|
|
|
|
mainSelectCases()
|
|
|
|
proc randomCurve(C: static Curve) =
|
|
let a = rng.random_unsafe(Fp[C])
|
|
|
|
var r_mul, r_sqr: Fp[C]
|
|
|
|
r_mul.prod(a, a)
|
|
r_sqr.square(a)
|
|
|
|
doAssert bool(r_mul == r_sqr)
|
|
|
|
proc randomHighHammingWeight(C: static Curve) =
|
|
let a = rng.random_highHammingWeight(Fp[C])
|
|
|
|
var r_mul, r_sqr: Fp[C]
|
|
|
|
r_mul.prod(a, a)
|
|
r_sqr.square(a)
|
|
|
|
doAssert bool(r_mul == r_sqr)
|
|
|
|
proc random_long01Seq(C: static Curve) =
|
|
let a = rng.random_long01Seq(Fp[C])
|
|
|
|
var r_mul, r_sqr: Fp[C]
|
|
|
|
r_mul.prod(a, a)
|
|
r_sqr.square(a)
|
|
|
|
doAssert bool(r_mul == r_sqr)
|
|
|
|
suite "Random Modular Squaring is consistent with Modular Multiplication" & " [" & $WordBitwidth & "-bit mode]":
|
|
test "Random squaring mod P-224 [FastSquaring = " & $(Fp[P224].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(P224)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(P224)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(P224)
|
|
|
|
test "Random squaring mod P-256 [FastSquaring = " & $(Fp[P256].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(P256)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(P256)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(P256)
|
|
|
|
test "Random squaring mod Secp256k1 [FastSquaring = " & $(Fp[Secp256k1].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(Secp256k1)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(Secp256k1)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(Secp256k1)
|
|
|
|
test "Random squaring mod BLS12_381 [FastSquaring = " & $(Fp[BLS12_381].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(BLS12_381)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(BLS12_381)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(BLS12_381)
|
|
|
|
test "Random squaring mod Curve25519 [FastSquaring = " & $(Fp[Curve25519].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(Curve25519)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(Curve25519)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(Curve25519)
|
|
|
|
test "Random squaring mod Bandersnatch [FastSquaring = " & $(Fp[Bandersnatch].getSpareBits() >= 2) & "]":
|
|
for _ in 0 ..< Iters:
|
|
randomCurve(Bandersnatch)
|
|
for _ in 0 ..< Iters:
|
|
randomHighHammingWeight(Bandersnatch)
|
|
for _ in 0 ..< Iters:
|
|
random_long01Seq(Bandersnatch)
|
|
|
|
suite "Modular squaring - bugs highlighted by property-based testing":
|
|
test "a² == (-a)² on for Fp[2^127 - 1] - #61":
|
|
var a{.noInit.}: Fp[Mersenne127]
|
|
a.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
|
|
|
|
var na{.noInit.}: Fp[Mersenne127]
|
|
|
|
na.neg(a)
|
|
|
|
a.square()
|
|
na.square()
|
|
|
|
doAssert bool(a == na),
|
|
"\n a² : " & a.mres.limbs.toString() &
|
|
"\n (-a)²: " & na.mres.limbs.toString()
|
|
|
|
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
|
|
a2.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
|
|
na2.neg(a2)
|
|
|
|
a2 *= a2
|
|
na2 *= na2
|
|
|
|
doAssert(
|
|
bool(a2 == na2) and
|
|
bool(a2 == a) and
|
|
bool(a2 == na),
|
|
"\n a*a: " & a2.mres.limbs.toString() &
|
|
"\n (-a)*(-a): " & na2.mres.limbs.toString()
|
|
)
|
|
|
|
test "a² == (-a)² on for Fp[2^127 - 1] - #62":
|
|
var a{.noInit.}: Fp[Mersenne127]
|
|
a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
|
|
|
|
var na{.noInit.}: Fp[Mersenne127]
|
|
|
|
na.neg(a)
|
|
|
|
a.square()
|
|
na.square()
|
|
|
|
doAssert bool(a == na),
|
|
"\n a² : " & a.mres.limbs.toString() &
|
|
"\n (-a)²: " & na.mres.limbs.toString()
|
|
|
|
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
|
|
a2.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
|
|
na2.neg(a2)
|
|
|
|
a2 *= a2
|
|
na2 *= na2
|
|
|
|
doAssert(
|
|
bool(a2 == na2) and
|
|
bool(a2 == a) and
|
|
bool(a2 == na),
|
|
"\n a*a: " & a2.mres.limbs.toString() &
|
|
"\n (-a)*(-a): " & na2.mres.limbs.toString()
|
|
)
|
|
|
|
test "32-bit fast squaring on BLS12-381 - #42":
|
|
# x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
|
# p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
|
# Fp = GF(p)
|
|
# a = Fp(Integer('0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B'))
|
|
# a2 = a*a
|
|
# print('a²: ' + Integer(a2).hex())
|
|
|
|
var a{.noInit.}, expected{.noInit.}: Fp[BLS12_381]
|
|
a.fromHex"0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B"
|
|
expected.fromHex"0x129e84715b197f76766c8604002cfc287fbe3d16774e18c599853ce48d03dc26bf882e159323ee3d25e52e4809ff4ccc"
|
|
|
|
var a2mul = a
|
|
var a2sqr = a
|
|
|
|
a2mul.prod(a, a)
|
|
a2sqr.square(a)
|
|
|
|
check:
|
|
bool(a2mul == expected)
|
|
bool(a2sqr == expected)
|
|
|
|
test "32-bit fast squaring on BLS12-381 - #43":
|
|
# x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
|
# p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
|
# Fp = GF(p)
|
|
# a = Fp(Integer('0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9'))
|
|
# a2 = a*a
|
|
# print('a²: ' + Integer(a2).hex())
|
|
|
|
var a{.noInit.}, expected{.noInit.}: Fp[BLS12_381]
|
|
a.fromHex"0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9"
|
|
expected.fromHex"0x94b12b599042198a4ad5ad05ed4da1a3332fe50518b6eb718d258d7e3c60a48a89f7417a0b413b92537c24c9e94e038"
|
|
|
|
var a2mul = a
|
|
var a2sqr = a
|
|
|
|
a2mul.prod(a, a)
|
|
a2sqr.square(a)
|
|
|
|
check:
|
|
bool(a2mul == expected)
|
|
bool(a2sqr == expected)
|