mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-17 14:30:55 +00:00
6ac974d65e
* Fix 8x bigger than necessary encoding size of miniscalars in scalar mul * initial windowed GLV-SAC implementation * Simplify table encoding to match k0 without flipping bits
205 lines
7.1 KiB
Nim
205 lines
7.1 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
# ############################################################
|
|
#
|
|
# Benchmark of elliptic curves
|
|
#
|
|
# ############################################################
|
|
|
|
import
|
|
# Internals
|
|
../constantine/config/[curves, common],
|
|
../constantine/arithmetic,
|
|
../constantine/io/io_bigints,
|
|
../constantine/elliptic/[ec_weierstrass_projective, ec_scalar_mul, ec_endomorphism_accel],
|
|
# Helpers
|
|
../helpers/[prng_unsafe, static_for],
|
|
./platforms,
|
|
# Standard library
|
|
std/[monotimes, times, strformat, strutils, macros],
|
|
# Reference unsafe scalar multiplication
|
|
../tests/support/ec_reference_scalar_mult
|
|
|
|
var rng: RngState
|
|
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
|
|
rng.seed(seed)
|
|
echo "bench xoshiro512** seed: ", seed
|
|
|
|
# warmup
|
|
proc warmup*() =
|
|
# Warmup - make sure cpu is on max perf
|
|
let start = cpuTime()
|
|
var foo = 123
|
|
for i in 0 ..< 300_000_000:
|
|
foo += i*i mod 456
|
|
foo = foo mod 789
|
|
|
|
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
|
|
let stop = cpuTime()
|
|
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
|
|
|
|
warmup()
|
|
|
|
when defined(gcc):
|
|
echo "\nCompiled with GCC"
|
|
elif defined(clang):
|
|
echo "\nCompiled with Clang"
|
|
elif defined(vcc):
|
|
echo "\nCompiled with MSVC"
|
|
elif defined(icc):
|
|
echo "\nCompiled with ICC"
|
|
else:
|
|
echo "\nCompiled with an unknown compiler"
|
|
|
|
echo "Optimization level => "
|
|
echo " no optimization: ", not defined(release)
|
|
echo " release: ", defined(release)
|
|
echo " danger: ", defined(danger)
|
|
echo " inline assembly: ", UseASM_X86_64
|
|
|
|
when (sizeof(int) == 4) or defined(Constantine32):
|
|
echo "⚠️ Warning: using Constantine with 32-bit limbs"
|
|
else:
|
|
echo "Using Constantine with 64-bit limbs"
|
|
|
|
when SupportsCPUName:
|
|
echo "Running on ", cpuName(), ""
|
|
|
|
when SupportsGetTicks:
|
|
echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
|
|
echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)"
|
|
|
|
echo "\n=================================================================================================================\n"
|
|
|
|
proc separator*() =
|
|
echo "-".repeat(177)
|
|
|
|
proc report(op, elliptic: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
|
|
let ns = inNanoseconds((stop-start) div iters)
|
|
let throughput = 1e9 / float64(ns)
|
|
when SupportsGetTicks:
|
|
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
|
|
else:
|
|
echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op"
|
|
|
|
proc notes*() =
|
|
echo "Notes:"
|
|
echo " - Compilers:"
|
|
echo " Compilers are severely limited on multiprecision arithmetic."
|
|
echo " Inline Assembly is used by default (nimble bench_fp)."
|
|
echo " Bench without assembly can use \"nimble bench_fp_gcc\" or \"nimble bench_fp_clang\"."
|
|
echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries."
|
|
echo " - The simplest operations might be optimized away by the compiler."
|
|
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"
|
|
|
|
macro fixEllipticDisplay(T: typedesc): untyped =
|
|
# At compile-time, enums are integers and their display is buggy
|
|
# we get the Curve ID instead of the curve name.
|
|
let instantiated = T.getTypeInst()
|
|
var name = $instantiated[1][0] # EllipticEquationFormCoordinates
|
|
let fieldName = $instantiated[1][1][0]
|
|
let curveName = $Curve(instantiated[1][1][1].intVal)
|
|
name.add "[" & fieldName & "[" & curveName & "]]"
|
|
result = newLit name
|
|
|
|
template bench(op: string, T: typedesc, iters: int, body: untyped): untyped =
|
|
let start = getMonotime()
|
|
when SupportsGetTicks:
|
|
let startClk = getTicks()
|
|
for _ in 0 ..< iters:
|
|
body
|
|
when SupportsGetTicks:
|
|
let stopClk = getTicks()
|
|
let stop = getMonotime()
|
|
|
|
when not SupportsGetTicks:
|
|
let startClk = -1'i64
|
|
let stopClk = -1'i64
|
|
|
|
report(op, fixEllipticDisplay(T), start, stop, startClk, stopClk, iters)
|
|
|
|
proc addBench*(T: typedesc, iters: int) =
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T)
|
|
let Q = rng.random_unsafe(T)
|
|
bench("EC Add " & G1_or_G2, T, iters):
|
|
r.sum(P, Q)
|
|
|
|
proc doublingBench*(T: typedesc, iters: int) =
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T)
|
|
bench("EC Double " & G1_or_G2, T, iters):
|
|
r.double(P)
|
|
|
|
proc scalarMulGenericBench*(T: typedesc, scratchSpaceSize: static int, iters: int) =
|
|
const bits = T.F.C.getCurveOrderBitwidth()
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T) # TODO: clear cofactor
|
|
|
|
let exponent = rng.random_unsafe(BigInt[bits])
|
|
var exponentCanonical{.noInit.}: array[(bits+7) div 8, byte]
|
|
exponentCanonical.exportRawUint(exponent, bigEndian)
|
|
|
|
var scratchSpace{.noInit.}: array[scratchSpaceSize, T]
|
|
|
|
bench("EC ScalarMul Generic " & G1_or_G2 & " (scratchsize = " & $scratchSpaceSize & ')', T, iters):
|
|
r = P
|
|
r.scalarMulGeneric(exponentCanonical, scratchSpace)
|
|
|
|
proc scalarMulEndo*(T: typedesc, iters: int) =
|
|
const bits = T.F.C.getCurveOrderBitwidth()
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T) # TODO: clear cofactor
|
|
|
|
let exponent = rng.random_unsafe(BigInt[bits])
|
|
|
|
bench("EC ScalarMul " & G1_or_G2 & " (endomorphism accelerated)", T, iters):
|
|
r = P
|
|
when T.F is Fp:
|
|
r.scalarMulGLV(exponent)
|
|
else:
|
|
{.error: "Not implemented".}
|
|
|
|
proc scalarMulEndoWindow*(T: typedesc, iters: int) =
|
|
const bits = T.F.C.getCurveOrderBitwidth()
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T) # TODO: clear cofactor
|
|
|
|
let exponent = rng.random_unsafe(BigInt[bits])
|
|
|
|
bench("EC ScalarMul Window-2 " & G1_or_G2 & " (endomorphism accelerated)", T, iters):
|
|
r = P
|
|
when T.F is Fp:
|
|
r.scalarMulGLV_m2w2(exponent)
|
|
else:
|
|
{.error: "Not implemented".}
|
|
|
|
proc scalarMulUnsafeDoubleAddBench*(T: typedesc, iters: int) =
|
|
const bits = T.F.C.getCurveOrderBitwidth()
|
|
const G1_or_G2 = when T.F is Fp: "G1" else: "G2"
|
|
|
|
var r {.noInit.}: T
|
|
let P = rng.random_unsafe(T) # TODO: clear cofactor
|
|
|
|
let exponent = rng.random_unsafe(BigInt[bits])
|
|
var exponentCanonical{.noInit.}: array[(bits+7) div 8, byte]
|
|
exponentCanonical.exportRawUint(exponent, bigEndian)
|
|
|
|
bench("EC ScalarMul " & G1_or_G2 & " (unsafe reference DoubleAdd)", T, iters):
|
|
r = P
|
|
r.unsafe_ECmul_double_add(exponentCanonical)
|