mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-17 06:20:54 +00:00
65eedd1cf7
* Skeleton of hash to curve for BLS12-381 G1 * Remove isodegree parameter * Fix polynomial evaluation of hashToG1 * Optimize hash_to_curve and add bench for hash to G1 * slight optim of jacobian isomap + v7 test vectors
471 lines
15 KiB
Python
471 lines
15 KiB
Python
#!/usr/bin/sage
|
||
# vim: syntax=python
|
||
# vim: set ts=2 sw=2 et:
|
||
|
||
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
# ############################################################
|
||
#
|
||
# Frobenius constants
|
||
#
|
||
# ############################################################
|
||
|
||
# Imports
|
||
# ---------------------------------------------------------
|
||
|
||
import os
|
||
import inspect, textwrap
|
||
|
||
# Working directory
|
||
# ---------------------------------------------------------
|
||
|
||
os.chdir(os.path.dirname(__file__))
|
||
|
||
# Sage imports
|
||
# ---------------------------------------------------------
|
||
# Accelerate arithmetic by accepting probabilistic proofs
|
||
from sage.structure.proof.all import arithmetic
|
||
arithmetic(False)
|
||
|
||
load('curves.sage')
|
||
|
||
# Utilities
|
||
# ---------------------------------------------------------
|
||
|
||
def fp2_to_hex(a):
|
||
v = vector(a)
|
||
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
|
||
|
||
def field_to_nim(value, field, curve, prefix = "", comment_above = "", comment_right = ""):
|
||
result = '# ' + comment_above + '\n' if comment_above else ''
|
||
comment_right = ' # ' + comment_right if comment_right else ''
|
||
|
||
if field == 'Fp2':
|
||
v = vector(value)
|
||
|
||
result += inspect.cleandoc(f"""
|
||
{prefix}Fp2[{curve}].fromHex( {comment_right}
|
||
"0x{Integer(v[0]).hex()}",
|
||
"0x{Integer(v[1]).hex()}"
|
||
)""")
|
||
elif field == 'Fp':
|
||
result += inspect.cleandoc(f"""
|
||
{prefix}Fp[{curve}].fromHex( {comment_right}
|
||
"0x{Integer(value).hex()}")
|
||
""")
|
||
else:
|
||
raise NotImplementedError()
|
||
|
||
return result
|
||
|
||
def dump_poly(name, poly, field, curve):
|
||
result = f'const {name}* = [\n'
|
||
result += ' # Polynomial k₀ + k₁ x + k₂ x² + k₃ x³ + ... + kₙ xⁿ\n'
|
||
result += ' # The polynomial is stored as an array of coefficients ordered from k₀ to kₙ\n'
|
||
result += '\n'
|
||
|
||
poly = list(poly)
|
||
lastRow = len(poly) - 1
|
||
|
||
for rowID, val in enumerate(reversed(poly)):
|
||
(coef, power) = val
|
||
result += textwrap.indent(
|
||
field_to_nim(
|
||
coef, field, curve,
|
||
comment_above = str(power)
|
||
),
|
||
' ')
|
||
result += ',\n' if rowID != lastRow else '\n'
|
||
|
||
result += ']'
|
||
return result
|
||
|
||
# Unused
|
||
# ---------------------------------------------------------
|
||
|
||
def find_z_sswu(F, A, B):
|
||
"""
|
||
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#ref-SAGE
|
||
Arguments:
|
||
- F, a field object, e.g., F = GF(2^521 - 1)
|
||
- A and B, the coefficients of the curve equation y² = x³ + A * x + B
|
||
"""
|
||
R.<xx> = F[] # Polynomial ring over F
|
||
g = xx^3 + F(A) * xx + F(B) # y² = g(x) = x³ + A * x + B
|
||
ctr = F.gen()
|
||
while True:
|
||
for Z_cand in (F(ctr), F(-ctr)):
|
||
if Z_cand.is_square():
|
||
# Criterion 1: Z is non-square in F.
|
||
continue
|
||
if Z_cand == F(-1):
|
||
# Criterion 2: Z != -1 in F.
|
||
continue
|
||
if not (g - Z_cand).is_irreducible():
|
||
# Criterion 3: g(x) - Z is irreducible over F.
|
||
continue
|
||
if g(B / (Z_cand * A)).is_square():
|
||
# Criterion 4: g(B / (Z * A)) is square in F.
|
||
return Z_cand
|
||
ctr += 1
|
||
|
||
# BLS12-381 G1
|
||
# ---------------------------------------------------------
|
||
# Hardcoding from spec:
|
||
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.1
|
||
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_3mod4.sage#L126-L132
|
||
|
||
def genBLS12381G1_H2C_constants(curve_config):
|
||
curve_name = 'BLS12_381'
|
||
|
||
# ------------------------------------------
|
||
p = curve_config[curve_name]['field']['modulus']
|
||
Fp = GF(p)
|
||
K.<u> = PolynomialRing(Fp)
|
||
# ------------------------------------------
|
||
|
||
# Hash to curve isogenous curve parameters
|
||
# y² = x³ + A'*x + B'
|
||
|
||
print('\n----> Hash-to-Curve map to isogenous BLS12-381 E\'1 <----\n')
|
||
buf = inspect.cleandoc(f"""
|
||
# Hash-to-Curve map to isogenous BLS12-381 E'1 constants
|
||
# -----------------------------------------------------------------
|
||
#
|
||
# y² = x³ + A'*x + B' with p ≡ 3 (mod 4) the BLS12-381 characteristic (base modulus)
|
||
#
|
||
# Hardcoding from spec:
|
||
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.1
|
||
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_3mod4.sage#L126-L132
|
||
""")
|
||
buf += '\n\n'
|
||
|
||
# Base constants
|
||
Aprime_E1 = Fp('0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d')
|
||
Bprime_E1 = Fp('0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0')
|
||
Z = Fp(11)
|
||
# Extra
|
||
minus_A = -Aprime_E1
|
||
ZmulA = Z * Aprime_E1
|
||
sqrt_minus_Z3 = sqrt(-Z^3)
|
||
|
||
buf += f'const {curve_name}_h2c_G1_Aprime_E1* = '
|
||
buf += field_to_nim(Aprime_E1, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G1_Bprime_E1* = '
|
||
buf += field_to_nim(Bprime_E1, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G1_Z* = '
|
||
buf += field_to_nim(Z, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G1_minus_A* = '
|
||
buf += field_to_nim(minus_A, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G1_ZmulA* = '
|
||
buf += field_to_nim(ZmulA, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G1_sqrt_minus_Z3* = '
|
||
buf += field_to_nim(sqrt_minus_Z3, 'Fp', curve_name)
|
||
buf += '\n'
|
||
|
||
return buf
|
||
|
||
def genBLS12381G1_H2C_isogeny_map(curve_config):
|
||
curve_name = 'BLS12_381'
|
||
|
||
# Hash to curve isogenous curve parameters
|
||
# y² = x³ + A'*x + B'
|
||
|
||
print('\n----> Hash-to-Curve 3-isogeny map BLS12-381 E\'1 constants <----\n')
|
||
buf = inspect.cleandoc(f"""
|
||
# Hash-to-Curve 11-isogeny map BLS12-381 E'1 constants
|
||
# -----------------------------------------------------------------
|
||
#
|
||
# The polynomials map a point (x', y') on the isogenous curve E'2
|
||
# to (x, y) on E2, represented as (xnum/xden, y' * ynum/yden)
|
||
|
||
""")
|
||
buf += '\n\n'
|
||
|
||
p = curve_config[curve_name]['field']['modulus']
|
||
Fp = GF(p)
|
||
|
||
# Base constants - E1
|
||
A = curve_config[curve_name]['curve']['a']
|
||
B = curve_config[curve_name]['curve']['b']
|
||
E1 = EllipticCurve(Fp, [A, B])
|
||
|
||
# Base constants - Isogenous curve E'1, degree 11
|
||
Aprime_E1 = Fp('0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d')
|
||
Bprime_E1 = Fp('0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0')
|
||
Eprime1 = EllipticCurve(Fp, [Aprime_E1, Bprime_E1])
|
||
|
||
iso = EllipticCurveIsogeny(E=E1, kernel=None, codomain=Eprime1, degree=11).dual()
|
||
if (- iso.rational_maps()[1])(1, 1) > iso.rational_maps()[1](1, 1):
|
||
iso.switch_sign()
|
||
|
||
(xm, ym) = iso.rational_maps()
|
||
maps = (xm.numerator(), xm.denominator(), ym.numerator(), ym.denominator())
|
||
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G1_11_isogeny_map_xnum',
|
||
xm.numerator(), 'Fp', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G1_11_isogeny_map_xden',
|
||
xm.denominator(), 'Fp', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G1_11_isogeny_map_ynum',
|
||
ym.numerator(), 'Fp', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G1_11_isogeny_map_yden',
|
||
ym.denominator(), 'Fp', curve_name)
|
||
|
||
return buf
|
||
|
||
# BLS12-381 G2
|
||
# ---------------------------------------------------------
|
||
# Hardcoding from spec:
|
||
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.2
|
||
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_9mod16.sage#L142-L148
|
||
|
||
def genBLS12381G2_H2C_constants(curve_config):
|
||
curve_name = 'BLS12_381'
|
||
|
||
# ------------------------------------------
|
||
embdeg = curve_config[curve_name]['tower']['embedding_degree']
|
||
twdeg = curve_config[curve_name]['tower']['twist_degree']
|
||
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
|
||
|
||
p = curve_config[curve_name]['field']['modulus']
|
||
Fp = GF(p)
|
||
K.<u> = PolynomialRing(Fp)
|
||
if g2field == 'Fp2':
|
||
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
|
||
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
|
||
else:
|
||
SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
|
||
Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
|
||
# ------------------------------------------
|
||
|
||
# Hash to curve isogenous curve parameters
|
||
# y² = x³ + A'*x + B'
|
||
|
||
print('\n----> Hash-to-Curve map to isogenous BLS12-381 E\'2 <----\n')
|
||
buf = inspect.cleandoc(f"""
|
||
# Hash-to-Curve map to isogenous BLS12-381 E'2 constants
|
||
# -----------------------------------------------------------------
|
||
#
|
||
# y² = x³ + A'*x + B' with p² = q ≡ 9 (mod 16), p the BLS12-381 characteristic (base modulus)
|
||
#
|
||
# Hardcoding from spec:
|
||
# - https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.2
|
||
# - https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/blob/f7dd3761/poc/sswu_opt_9mod16.sage#L142-L148
|
||
""")
|
||
buf += '\n\n'
|
||
|
||
# Base constants
|
||
Aprime_E2 = Fp2([0, 240])
|
||
Bprime_E2 = Fp2([1012, 1012])
|
||
Z = Fp2([-2, -1])
|
||
# Extra
|
||
minus_A = -Aprime_E2
|
||
ZmulA = Z * Aprime_E2
|
||
inv_Z3 = (Z^3)^-1 # modular inverse of Z³
|
||
(a, b) = vector(inv_Z3)
|
||
squared_norm_inv_Z3 = a^2 + b^2 # ||1/Z³||²
|
||
# x^((p-3)/4)) ≡ 1/√x (mod p) if p ≡ 3 (mod 4)
|
||
inv_norm_inv_Z3 = squared_norm_inv_Z3^((p-3)/4) # 1/||1/Z³||
|
||
|
||
buf += f'const {curve_name}_h2c_G2_Aprime_E2* = '
|
||
buf += field_to_nim(Aprime_E2, 'Fp2', curve_name, comment_right = "240𝑖")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_Bprime_E2* = '
|
||
buf += field_to_nim(Bprime_E2, 'Fp2', curve_name, comment_right = "1012 * (1 + 𝑖)")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_Z* = '
|
||
buf += field_to_nim(Z, 'Fp2', curve_name, comment_right = "-(2 + 𝑖)")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_minus_A* = '
|
||
buf += field_to_nim(minus_A, 'Fp2', curve_name, comment_right = "-240𝑖")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_ZmulA* = '
|
||
buf += field_to_nim(ZmulA, 'Fp2', curve_name, comment_right = "Z*A = 240-480𝑖")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_inv_Z3* = '
|
||
buf += field_to_nim(inv_Z3, 'Fp2', curve_name, comment_right = "1/Z³")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_squared_norm_inv_Z3* = '
|
||
buf += field_to_nim(squared_norm_inv_Z3, 'Fp', curve_name, comment_right = "||1/Z³||²")
|
||
buf += '\n'
|
||
|
||
buf += f'const {curve_name}_h2c_G2_inv_norm_inv_Z3* = '
|
||
buf += field_to_nim(inv_norm_inv_Z3, 'Fp', curve_name, comment_right = "1/||1/Z³||")
|
||
buf += '\n'
|
||
|
||
return buf
|
||
|
||
def genBLS12381G2_H2C_isogeny_map(curve_config):
|
||
curve_name = 'BLS12_381'
|
||
|
||
# ------------------------------------------
|
||
p = curve_config[curve_name]['field']['modulus']
|
||
# This extension field construction
|
||
# does not work with isogenies :/
|
||
#
|
||
# embdeg = curve_config[curve_name]['tower']['embedding_degree']
|
||
# twdeg = curve_config[curve_name]['tower']['twist_degree']
|
||
# g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
|
||
#
|
||
# Fp = GF(p)
|
||
# K.<u> = PolynomialRing(Fp)
|
||
# if g2field == 'Fp2':
|
||
# QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
|
||
# Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
|
||
# else:
|
||
# SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
|
||
# Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
|
||
# ------------------------------------------
|
||
|
||
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
|
||
Fp2.<beta> = GF(p^2, modulus=(x^2-QNR_Fp))
|
||
|
||
# Hash to curve isogenous curve parameters
|
||
# y² = x³ + A'*x + B'
|
||
|
||
print('\n----> Hash-to-Curve 3-isogeny map BLS12-381 E\'2 constants <----\n')
|
||
buf = inspect.cleandoc(f"""
|
||
# Hash-to-Curve 3-isogeny map BLS12-381 E'2 constants
|
||
# -----------------------------------------------------------------
|
||
#
|
||
# The polynomials map a point (x', y') on the isogenous curve E'2
|
||
# to (x, y) on E2, represented as (xnum/xden, y' * ynum/yden)
|
||
|
||
""")
|
||
buf += '\n\n'
|
||
|
||
# Base constants - E2
|
||
A = curve_config[curve_name]['curve']['a']
|
||
B = curve_config[curve_name]['curve']['b']
|
||
twist = curve_config[curve_name]['tower']['twist']
|
||
SNR_Fp2 = curve_config[curve_name]['tower']['SNR_Fp2']
|
||
|
||
if twist == 'M_twist':
|
||
Btwist = B * Fp2(SNR_Fp2)
|
||
else:
|
||
Btwist = B / Fp2(SNR_Fp2)
|
||
|
||
E2 = EllipticCurve(Fp2, [A, B * Fp2(SNR_Fp2)])
|
||
|
||
# Base constants - Isogenous curve E'2, degree 3
|
||
Aprime_E2 = Fp2([0, 240])
|
||
Bprime_E2 = Fp2([1012, 1012])
|
||
Eprime2 = EllipticCurve(Fp2, [Aprime_E2, Bprime_E2])
|
||
|
||
iso_kernel = [6 * (1 - beta), 1]
|
||
iso = EllipticCurveIsogeny(E=Eprime2, kernel=iso_kernel, codomain=E2, degree=3)
|
||
if (- iso.rational_maps()[1])(1, 1) > iso.rational_maps()[1](1, 1):
|
||
iso.switch_sign()
|
||
|
||
(xm, ym) = iso.rational_maps()
|
||
maps = (xm.numerator(), xm.denominator(), ym.numerator(), ym.denominator())
|
||
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G2_3_isogeny_map_xnum',
|
||
xm.numerator(), 'Fp2', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G2_3_isogeny_map_xden',
|
||
xm.denominator(), 'Fp2', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G2_3_isogeny_map_ynum',
|
||
ym.numerator(), 'Fp2', curve_name)
|
||
buf += '\n'
|
||
buf += dump_poly(
|
||
'BLS12_381_h2c_G2_3_isogeny_map_yden',
|
||
ym.denominator(), 'Fp2', curve_name)
|
||
|
||
return buf
|
||
|
||
# CLI
|
||
# ---------------------------------------------------------
|
||
|
||
if __name__ == "__main__":
|
||
# Usage
|
||
# BLS12-381
|
||
# sage sage/derive_hash_to_curve.sage BLS12_381 G2
|
||
|
||
from argparse import ArgumentParser
|
||
|
||
parser = ArgumentParser()
|
||
parser.add_argument("curve",nargs="+")
|
||
args = parser.parse_args()
|
||
|
||
curve = args.curve[0]
|
||
group = args.curve[1]
|
||
|
||
if curve == 'BLS12_381' and group == 'G1':
|
||
h2c = genBLS12381G1_H2C_constants(Curves)
|
||
h2c += '\n\n'
|
||
h2c += genBLS12381G1_H2C_isogeny_map(Curves)
|
||
|
||
with open(f'{curve.lower()}_hash_to_curve_g1.nim', 'w') as f:
|
||
f.write(copyright())
|
||
f.write('\n\n')
|
||
|
||
f.write(inspect.cleandoc("""
|
||
import
|
||
../config/curves,
|
||
../io/io_fields
|
||
"""))
|
||
|
||
f.write('\n\n')
|
||
f.write(h2c)
|
||
|
||
print(f'Successfully created {curve.lower()}_hash_to_curve_g1.nim')
|
||
|
||
elif curve == 'BLS12_381' and group == 'G2':
|
||
h2c = genBLS12381G2_H2C_constants(Curves)
|
||
h2c += '\n\n'
|
||
h2c += genBLS12381G2_H2C_isogeny_map(Curves)
|
||
|
||
with open(f'{curve.lower()}_hash_to_curve_g2.nim', 'w') as f:
|
||
f.write(copyright())
|
||
f.write('\n\n')
|
||
|
||
f.write(inspect.cleandoc("""
|
||
import
|
||
../config/curves,
|
||
../io/[io_fields, io_extfields]
|
||
"""))
|
||
|
||
f.write('\n\n')
|
||
f.write(h2c)
|
||
|
||
print(f'Successfully created {curve.lower()}_hash_to_curve_g2.nim')
|
||
else:
|
||
raise ValueError(
|
||
curve + group +
|
||
' is not configured '
|
||
)
|