constantine/tests/test_primitives.nim
Mamy Ratsimbazafy 4ff0e3d90b
Internals refactor + renewed focus on perf (#17)
* Lay out the refactoring objectives and tradeoffs

* Refactor the 32 and 64-bit primitives [skip ci]

* BigInts and Modular BigInts compile

* Make the bigints test compile

* Fix modular reduction

* Fix reduction tests vs GMP

* Implement montegomery mul, pow, inverse, WIP finite field compilation

* Make FiniteField compile

* Fix exponentiation compilation

* Fix Montgomery magic constant computation  for 2^64 words

* Fix typo in non-optimized CIOS - passing finite fields IO tests

* Add limbs comparisons [skip ci]

* Fix on precomputation of the Montgomery magic constant

* Passing all tests including 𝔽p2

* modular addition, the test for mersenne prime was wrong

* update benches

* Fix "nimble test" + typo on out-of-place field addition

* bigint division, normalization is needed: https://travis-ci.com/github/mratsim/constantine/jobs/298359743

* missing conversion in subborrow non-x86 fallback - https://travis-ci.com/github/mratsim/constantine/jobs/298359744

* Fix little-endian serialization

* Constantine32 flag to run 32-bit constantine on 64-bit machines

* IO Field test, ensure that BaseType is used instead of uint64 when the prime can field in uint32

* Implement proper addcarry and subborrow fallback for the compile-time VM

* Fix export issue when the logical wordbitwidth == physical wordbitwidth - passes all tests (32-bit and 64-bit)

* Fix uint128 on ARM

* Fix C++ conditional copy and ARM addcarry/subborrow

* Add investigation for SIGFPE in Travis

* Fix debug display for unsafeDiv2n1n

* multiplexer typo

* moveMem bug in glibc of Ubuntu 16.04?

* Was probably missing an early clobbered register annotation on conditional mov

* Note on Montgomery-friendly moduli

* Strongly suspect a GCC before GCC 7 codegen bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87139)

* hex conversion was (for debugging) not taking requested order into account + inlining comment

* Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?

* Revert "Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?"

This reverts commit 087f9aa7fb40bbd058d05cbd8eec7fc082911f49.

* Fix subborrow fallback for non-x86 (need to maks the borrow)
2020-03-16 16:33:51 +01:00

191 lines
6.6 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import unittest, random, math,
../constantine/primitives
# Random seed for reproducibility
randomize(0xDEADBEEF)
template undistinct[T](x: Ct[T]): T =
T(x)
proc main() =
suite "Constant-time unsigned integers":
test "High - getting the biggest representable number":
check:
high(Ct[byte]).undistinct == 0xFF.byte
high(Ct[uint8]).undistinct == 0xFF'u8
high(Ct[uint16]).undistinct == 0xFFFF'u16
high(Ct[uint32]).undistinct == 0xFFFFFFFF'u32
high(Ct[uint64]).undistinct == 0xFFFFFFFF_FFFFFFFF'u64
test "bitwise `and`, `or`, `xor`, `not`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template bitwise_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), ct(0'u32)).undistinct == op(0'u32, 0'u32)
op(ct(0'u32), ct(1'u32)).undistinct == op(0'u32, 1'u32)
op(ct(1234'u64), ct(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.ct, y1.ct).undistinct == op(x1, y1)
op(x2.ct, y2.ct).undistinct == op(x2, y2)
op(x3.ct, y3.ct).undistinct == op(x3, y3)
bitwise_check(`and`)
bitwise_check(`or`)
bitwise_check(`xor`)
block:
check:
not(ct(0'u32)).undistinct == not 0'u32
not(ct(1'u32)).undistinct == not 1'u32
not(ct(1234'u64)).undistinct == not 1234'u64
not(ct(5678'u64)).undistinct == not 5678'u64
not(ct(x1)).undistinct == not x1
not(ct(x2)).undistinct == not x2
not(ct(x3)).undistinct == not x3
not(ct(y1)).undistinct == not y1
not(ct(y2)).undistinct == not y2
not(ct(y3)).undistinct == not y3
test "Logical shifts":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int32)).uint64
let x3 = rand(high(int32)).uint64
let y3 = rand(high(int32)).uint64
let s1 = rand(10)
let s2 = rand(10)
let s3 = rand(10)
template shift_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), 1).undistinct == op(0'u32, 1)
op(ct(1'u32), 2).undistinct == op(1'u32, 2)
op(ct(1234'u64), 3).undistinct == op(1234'u64, 3)
op(ct(2'u64^30), 1).undistinct == op(2'u64^30, 1)
op(ct(2'u64^31 + 1), 1).undistinct == op(2'u64^31 + 1, 1)
op(ct(2'u64^32), 1).undistinct == op(2'u64^32, 1)
op(x1.ct, s1).undistinct == op(x1, s1)
op(x2.ct, s2).undistinct == op(x2, s2)
op(x3.ct, s3).undistinct == op(x3, s3)
op(y1.ct, s1).undistinct == op(y1, s1)
op(y2.ct, s2).undistinct == op(y2, s2)
op(y3.ct, s3).undistinct == op(y3, s3)
shift_check(`shl`)
shift_check(`shr`)
test "Operators `+`, `-`, `*`":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
template operator_check(op: untyped): untyped =
block:
check:
op(ct(0'u32), ct(0'u32)).undistinct == op(0'u32, 0'u32)
op(ct(0'u32), ct(1'u32)).undistinct == op(0'u32, 1'u32)
op(ct(1234'u64), ct(5678'u64)).undistinct == op(1234'u64, 5678'u64)
op(x1.ct, y1.ct).undistinct == op(x1, y1)
op(x2.ct, y2.ct).undistinct == op(x2, y2)
op(x3.ct, y3.ct).undistinct == op(x3, y3)
operator_check(`+`)
operator_check(`-`)
operator_check(`*`)
test "Unary `-`, returning the 2-complement of an unsigned integer":
let x1 = rand(high(int)).uint64
let y1 = rand(high(int)).uint64
let x2 = rand(high(int)).uint64
let y2 = rand(high(int)).uint64
let x3 = rand(high(int)).uint64
let y3 = rand(high(int)).uint64
check:
(-ct(0'u32)).undistinct == 0
(-high(Ct[uint32])).undistinct == 1'u32
(-ct(0x80000000'u32)).undistinct == 0x80000000'u32 # This is low(int32) == 0b10000..0000
undistinct(-x1.ct) == undistinct(not(x1.ct) + ct(1'u64))
undistinct(-x2.ct) == undistinct(not(x2.ct) + ct(1'u64))
undistinct(-x3.ct) == undistinct(not(x3.ct) + ct(1'u64))
undistinct(-y1.ct) == undistinct(not(y1.ct) + ct(1'u64))
undistinct(-y2.ct) == undistinct(not(y2.ct) + ct(1'u64))
undistinct(-y3.ct) == undistinct(not(y3.ct) + ct(1'u64))
suite "Constant-time booleans":
test "Boolean not":
check:
not(ctrue(uint32)).bool == false
not(cfalse(uint32)).bool == true
test "Comparison":
check:
bool(ct(0'u32) != ct(0'u32)) == false
bool(ct(0'u32) != ct(1'u32)) == true
bool(ct(10'u32) == ct(10'u32)) == true
bool(ct(10'u32) != ct(20'u32)) == true
bool(ct(10'u32) <= ct(10'u32)) == true
bool(ct(10'u32) <= ct(20'u32)) == true
bool(ct(10'u32) <= ct(5'u32)) == false
bool(ct(10'u32) <= ct(0xFFFFFFFF'u32)) == true
bool(ct(10'u32) < ct(10'u32)) == false
bool(ct(10'u32) < ct(20'u32)) == true
bool(ct(10'u32) < ct(5'u32)) == false
bool(ct(10'u32) < ct(0xFFFFFFFF'u32)) == true
bool(ct(10'u32) > ct(10'u32)) == false
bool(ct(10'u32) > ct(20'u32)) == false
bool(ct(10'u32) > ct(5'u32)) == true
bool(ct(10'u32) > ct(0xFFFFFFFF'u32)) == false
bool(ct(10'u32) >= ct(10'u32)) == true
bool(ct(10'u32) >= ct(20'u32)) == false
bool(ct(10'u32) >= ct(5'u32)) == true
bool(ct(10'u32) >= ct(0xFFFFFFFF'u32)) == false
test "Multiplexer/selector - mux(ctl, x, y) <=> ctl? x: y":
let u = 10'u32.ct
let v = 20'u32.ct
let w = 5'u32.ct
let y = ctrue(uint32)
let n = cfalse(uint32)
check:
bool(mux(y, u, v) == u)
bool(mux(n, u, v) == v)
bool(mux(y, u, w) == u)
bool(mux(n, u, w) == w)
bool(mux(y, v, w) == v)
bool(mux(n, v, w) == w)
main()