constantine/benchmarks/bls12_381_fp.nim

156 lines
4.9 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Benchmark of modular exponentiation
#
# ############################################################
# 2 implementations are available
# - 1 is constant time
# - 1 exposes the exponent bits to:
# timing attack,
# memory access analysis,
# power analysis (i.e. oscilloscopes on embedded)
# It is suitable for public exponents for example
# to compute modular inversion via the Fermat method
import
../constantine/config/[common, curves],
../constantine/arithmetic/[bigints, finite_fields],
../constantine/io/[io_bigints, io_fields],
random, std/monotimes, times, strformat,
./timers
const Iters = 1_000_000
const InvIters = 1000
randomize(1234)
# warmup
proc warmup*() =
# Warmup - make sure cpu is on max perf
let start = cpuTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = cpuTime()
echo &"\n\nWarmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n"
warmup()
echo "\n⚠️ Measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them."
echo "==========================================================================================================\n"
proc report(op, field: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) =
echo &"{op:<15} {field:<15} {inNanoseconds((stop-start) div iters):>9} ns {(stopClk - startClk) div iters:>9} cycles"
proc addBench() =
var x, y: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
# BLS12-381 prime - 2
y.fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< Iters:
x += y
let stopClk = getTicks()
let stop = getMonotime()
report("Addition", "Fp[BLS12_381]", start, stop, startClk, stopClk, Iters)
addBench()
proc subBench() =
var x, y: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
# BLS12-381 prime - 2
y.fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< Iters:
x -= y
let stopClk = getTicks()
let stop = getMonotime()
report("Substraction", "Fp[BLS12_381]", start, stop, startClk, stopClk, Iters)
subBench()
proc negBench() =
var r, x: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< Iters:
r.neg(x)
let stopClk = getTicks()
let stop = getMonotime()
report("Negation", "Fp[BLS12_381]", start, stop, startClk, stopClk, Iters)
negBench()
proc mulBench() =
var r, x, y: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
# BLS12-381 prime - 2
y.fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< Iters:
r.prod(x, y)
let stopClk = getTicks()
let stop = getMonotime()
report("Multiplication", "Fp[BLS12_381]", start, stop, startClk, stopClk, Iters)
mulBench()
proc sqrBench() =
var r, x: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< Iters:
r.square(x)
let stopClk = getTicks()
let stop = getMonotime()
report("Squaring", "Fp[BLS12_381]", start, stop, startClk, stopClk, Iters)
sqrBench()
proc invBench() =
# TODO: having x on the stack triggers stack smashing detection. To be investigated
var x: ref Fp[BLS12_381]
new x
# BN254 field modulus
x[].fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
let start = getMonotime()
let startClk = getTicks()
for _ in 0 ..< InvIters:
# Note: we don't copy the original x so x is alterning between x and x^-1
inv(x[])
let stopClk = getTicks()
let stop = getMonotime()
report("Inversion", "Fp[BLS12_381]", start, stop, startClk, stopClk, InvIters)
invBench()