106 lines
3.3 KiB
Python
106 lines
3.3 KiB
Python
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
# ############################################################
|
|
#
|
|
# BN254 test generator
|
|
#
|
|
# ############################################################
|
|
|
|
# Parameters
|
|
x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
|
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
|
r = x^4 - x^2 + 1
|
|
cofactor = Integer('0x396c8c005555e1568c00aaab0000aaab')
|
|
|
|
# Effective cofactor for the G2 curve (that leads to equivalent hashToG2 when using endomorphisms)
|
|
g2_h_eff = Integer('0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551')
|
|
|
|
# Finite fields
|
|
Fp = GF(p)
|
|
K2.<u> = PolynomialRing(Fp)
|
|
Fp2.<beta> = Fp.extension(u^2+1)
|
|
# K6.<v> = PolynomialRing(Fp2)
|
|
# Fp6.<eta> = Fp2.extension(v^3-Fp2([1, 1])
|
|
# K12.<w> = PolynomialRing(Fp6)
|
|
# K12.<gamma> = F6.extension(w^2-eta)
|
|
|
|
# Curves
|
|
b = 4
|
|
SNR = Fp2([1, 1])
|
|
G1 = EllipticCurve(Fp, [0, b])
|
|
G2 = EllipticCurve(Fp2, [0, b*SNR])
|
|
|
|
# Test generator
|
|
set_random_seed(1337)
|
|
|
|
print('=========================================')
|
|
print('G1 vectors: ')
|
|
for i in range(10):
|
|
Prand = G1.random_point()
|
|
|
|
# Clear cofactor
|
|
P = Prand * cofactor
|
|
|
|
(Px, Py, Pz) = P
|
|
print('Px: ' + Integer(Px).hex())
|
|
print('Py: ' + Integer(Py).hex())
|
|
# print('Pz: ' + Integer(Pz).hex())
|
|
exponent = randrange(r) # Pick an integer below curve order
|
|
print('scalar: ' + Integer(exponent).hex())
|
|
|
|
Q = exponent * P
|
|
(Qx, Qy, Qz) = Q
|
|
print('Qx: ' + Integer(Qx).hex())
|
|
print('Qy: ' + Integer(Qy).hex())
|
|
# print('Qz: ' + Integer(Qz).hex())
|
|
print('---------------------------------------')
|
|
print('=========================================')
|
|
print('G2 vectors: ')
|
|
|
|
for i in range(10):
|
|
Prand = G2.random_point()
|
|
|
|
# Clear cofactor
|
|
P = Prand * g2_h_eff
|
|
|
|
(Px, Py, Pz) = P
|
|
vPx = vector(Px)
|
|
vPy = vector(Py)
|
|
# Pz = vector(Pz)
|
|
print('Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
|
print('Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
|
|
|
exponent = randrange(r) # Pick an integer below curve order
|
|
print('scalar: ' + Integer(exponent).hex())
|
|
|
|
Q = exponent * P
|
|
(Qx, Qy, Qz) = Q
|
|
Qx = vector(Qx)
|
|
Qy = vector(Qy)
|
|
print('Qx: ' + Integer(Qx[0]).hex() + ' + β * ' + Integer(Qx[1]).hex())
|
|
print('Qy: ' + Integer(Qy[0]).hex() + ' + β * ' + Integer(Qy[1]).hex())
|
|
print('---------------------------------------')
|
|
print('=========================================')
|
|
|
|
# CurveOrder sanity check
|
|
#
|
|
# P = G1.random_point()
|
|
# (Px, Py, Pz) = P
|
|
# print('Px: ' + Integer(Px).hex())
|
|
# print('Py: ' + Integer(Py).hex())
|
|
# print('Pz: ' + Integer(Pz).hex())
|
|
#
|
|
# print('order: ' + Integer(r).hex())
|
|
#
|
|
# Q = (r * cofactor) * P
|
|
# (Qx, Qy, Qz) = Q
|
|
# print('Qx: ' + Integer(Qx).hex())
|
|
# print('Qy: ' + Integer(Qy).hex())
|
|
# print('Qz: ' + Integer(Qz).hex())
|