constantine/tests/math/t_finite_fields.nim
Mamy Ratsimbazafy 26954f905a
Constant time (#185)
* Implement fully constant-time division closes #2 closes #9

* constant-time hex parsing

* prevent cache timing attacks in toHex() conversion (which is only for test/debug purposes anyway)
2022-02-28 09:23:26 +01:00

372 lines
10 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import std/unittest,
../../constantine/math/arithmetic,
../../constantine/math/arithmetic/limbs_montgomery,
../../constantine/math/io/[io_bigints, io_fields],
../../constantine/math/config/curves
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
echo "\n------------------------------------------------------\n"
proc main() =
suite "Basic arithmetic over finite fields":
test "Addition mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(90'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
90'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(21'u32)
z.fromUint(0'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(22'u32)
z.fromUint(1'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
1'u64 == cast[uint64](x_bytes)
test "Substraction mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(70'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
70'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(80'u32)
z.fromUint(0'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(81'u32)
z.fromUint(100'u32)
x -= y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](x_bytes)
test "Multiplication mod 101":
block:
var x, y, z, r: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.marshal(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](r_bytes)
block:
var x, y, z, r: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(11'u32)
z.fromUint(9'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.marshal(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
9'u64 == cast[uint64](r_bytes)
test "Addition mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(90'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 90'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(1'u32)
z.fromUint(0'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 0'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(2'u64)
z.fromUint(1'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64
test "Substraction mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(70'u64)
x -= y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 70'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(0'u64)
y.fromUint(1'u64)
z.fromUint(1'u64 shl 61 - 2)
x -= y
var x_bytes: array[8, byte]
x_bytes.marshal(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64 shl 61 - 2
test "Multiplication mod 2^61 - 1":
block:
var x, y, z, r: Fp[Mersenne61]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.marshal(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
cast[uint64](r_bytes) == 100'u64
block:
var x, y, z, r: Fp[Mersenne61]
x.fromUint(1'u32 shl 31)
y.fromUint(1'u32 shl 31)
z.fromUint(2'u32)
r.prod(x, y)
var r_bytes: array[8, byte]
r_bytes.marshal(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
new_r == 2'u64
main()
proc largeField() =
suite "Large field":
test "Negate 0 returns 0 (unique Montgomery repr)":
# https://github.com/mratsim/constantine/issues/136
# and https://github.com/mratsim/constantine/issues/114
# The assembly implementation of neg didn't check
# after M-a if a was zero and so while in mod M
# M ≡ 0 (mod M), the `==` doesn't support unreduced representation.
var a: Fp[BN254_Snarks]
var r {.noInit.}: Fp[BN254_Snarks]
r.neg(a)
check: bool r.isZero()
test "fromMont doesn't need a final substraction with 256-bit prime (full word used)":
block:
var a: Fp[Secp256k1]
a.mres = Fp[Secp256k1].getMontyPrimeMinus1()
let expected = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E"
var r: BigInt[256]
r.fromField(a)
check: bool(r == expected)
block:
var a: Fp[Secp256k1]
var d: FpDbl[Secp256k1]
# Set Montgomery repr to the largest field element in Montgomery Residue form
a.mres = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E"
d.limbs2x = (BigInt[512].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E").limbs
var r, expected: BigInt[256]
r.fromField(a)
expected.limbs.redc2xMont(d.limbs2x, Secp256k1.Mod().limbs, Fp[Secp256k1].getNegInvModWord(), Fp[Secp256k1].getSpareBits())
check: bool(r == expected)
test "fromMont doesn't need a final substraction with 255-bit prime (1 spare bit)":
block:
var a: Fp[Edwards25519]
a.mres = Fp[Edwards25519].getMontyPrimeMinus1()
let expected = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"
var r: BigInt[255]
r.fromField(a)
check: bool(r == expected)
block:
var a: Fp[Edwards25519]
var d: FpDbl[Edwards25519]
# Set Montgomery repr to the largest field element in Montgomery Residue form
a.mres = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"
d.limbs2x = (BigInt[512].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec").limbs
var r, expected: BigInt[255]
r.fromField(a)
expected.limbs.redc2xMont(d.limbs2x, Edwards25519.Mod().limbs, Fp[Edwards25519].getNegInvModWord(), Fp[Edwards25519].getSpareBits())
check: bool(r == expected)
largeField()