mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-14 13:04:42 +00:00
26954f905a
* Implement fully constant-time division closes #2 closes #9 * constant-time hex parsing * prevent cache timing attacks in toHex() conversion (which is only for test/debug purposes anyway)
372 lines
10 KiB
Nim
372 lines
10 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
import std/unittest,
|
|
../../constantine/math/arithmetic,
|
|
../../constantine/math/arithmetic/limbs_montgomery,
|
|
../../constantine/math/io/[io_bigints, io_fields],
|
|
../../constantine/math/config/curves
|
|
|
|
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
|
|
|
|
echo "\n------------------------------------------------------\n"
|
|
|
|
proc main() =
|
|
suite "Basic arithmetic over finite fields":
|
|
test "Addition mod 101":
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(10'u32)
|
|
z.fromUint(90'u32)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
90'u64 == cast[uint64](x_bytes)
|
|
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(21'u32)
|
|
z.fromUint(0'u32)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
0'u64 == cast[uint64](x_bytes)
|
|
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(22'u32)
|
|
z.fromUint(1'u32)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
1'u64 == cast[uint64](x_bytes)
|
|
|
|
test "Substraction mod 101":
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(10'u32)
|
|
z.fromUint(70'u32)
|
|
|
|
x -= y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
70'u64 == cast[uint64](x_bytes)
|
|
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(80'u32)
|
|
z.fromUint(0'u32)
|
|
|
|
x -= y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
0'u64 == cast[uint64](x_bytes)
|
|
|
|
block:
|
|
var x, y, z: Fp[Fake101]
|
|
|
|
x.fromUint(80'u32)
|
|
y.fromUint(81'u32)
|
|
z.fromUint(100'u32)
|
|
|
|
x -= y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
100'u64 == cast[uint64](x_bytes)
|
|
|
|
test "Multiplication mod 101":
|
|
block:
|
|
var x, y, z, r: Fp[Fake101]
|
|
|
|
x.fromUint(10'u32)
|
|
y.fromUint(10'u32)
|
|
z.fromUint(100'u32)
|
|
|
|
r.prod(x, y)
|
|
|
|
var r_bytes: array[8, byte]
|
|
r_bytes.marshal(r, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == r)
|
|
# Check equality when converting back to natural domain
|
|
100'u64 == cast[uint64](r_bytes)
|
|
|
|
block:
|
|
var x, y, z, r: Fp[Fake101]
|
|
|
|
x.fromUint(10'u32)
|
|
y.fromUint(11'u32)
|
|
z.fromUint(9'u32)
|
|
|
|
r.prod(x, y)
|
|
|
|
var r_bytes: array[8, byte]
|
|
r_bytes.marshal(r, cpuEndian)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == r)
|
|
# Check equality when converting back to natural domain
|
|
9'u64 == cast[uint64](r_bytes)
|
|
|
|
test "Addition mod 2^61 - 1":
|
|
block:
|
|
var x, y, z: Fp[Mersenne61]
|
|
|
|
x.fromUint(80'u64)
|
|
y.fromUint(10'u64)
|
|
z.fromUint(90'u64)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
let new_x = cast[uint64](x_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
new_x == 90'u64
|
|
|
|
block:
|
|
var x, y, z: Fp[Mersenne61]
|
|
|
|
x.fromUint(1'u64 shl 61 - 2)
|
|
y.fromUint(1'u32)
|
|
z.fromUint(0'u32)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
let new_x = cast[uint64](x_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
new_x == 0'u64
|
|
|
|
block:
|
|
var x, y, z: Fp[Mersenne61]
|
|
|
|
x.fromUint(1'u64 shl 61 - 2)
|
|
y.fromUint(2'u64)
|
|
z.fromUint(1'u64)
|
|
|
|
x += y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
let new_x = cast[uint64](x_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
new_x == 1'u64
|
|
|
|
test "Substraction mod 2^61 - 1":
|
|
block:
|
|
var x, y, z: Fp[Mersenne61]
|
|
|
|
x.fromUint(80'u64)
|
|
y.fromUint(10'u64)
|
|
z.fromUint(70'u64)
|
|
|
|
x -= y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
let new_x = cast[uint64](x_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
new_x == 70'u64
|
|
|
|
block:
|
|
var x, y, z: Fp[Mersenne61]
|
|
|
|
x.fromUint(0'u64)
|
|
y.fromUint(1'u64)
|
|
z.fromUint(1'u64 shl 61 - 2)
|
|
|
|
x -= y
|
|
|
|
var x_bytes: array[8, byte]
|
|
x_bytes.marshal(x, cpuEndian)
|
|
let new_x = cast[uint64](x_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == x)
|
|
# Check equality when converting back to natural domain
|
|
new_x == 1'u64 shl 61 - 2
|
|
|
|
test "Multiplication mod 2^61 - 1":
|
|
block:
|
|
var x, y, z, r: Fp[Mersenne61]
|
|
|
|
x.fromUint(10'u32)
|
|
y.fromUint(10'u32)
|
|
z.fromUint(100'u32)
|
|
|
|
r.prod(x, y)
|
|
|
|
var r_bytes: array[8, byte]
|
|
r_bytes.marshal(r, cpuEndian)
|
|
let new_r = cast[uint64](r_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == r)
|
|
# Check equality when converting back to natural domain
|
|
cast[uint64](r_bytes) == 100'u64
|
|
|
|
block:
|
|
var x, y, z, r: Fp[Mersenne61]
|
|
|
|
x.fromUint(1'u32 shl 31)
|
|
y.fromUint(1'u32 shl 31)
|
|
z.fromUint(2'u32)
|
|
|
|
r.prod(x, y)
|
|
|
|
var r_bytes: array[8, byte]
|
|
r_bytes.marshal(r, cpuEndian)
|
|
let new_r = cast[uint64](r_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(z == r)
|
|
# Check equality when converting back to natural domain
|
|
new_r == 2'u64
|
|
|
|
|
|
main()
|
|
|
|
proc largeField() =
|
|
suite "Large field":
|
|
test "Negate 0 returns 0 (unique Montgomery repr)":
|
|
# https://github.com/mratsim/constantine/issues/136
|
|
# and https://github.com/mratsim/constantine/issues/114
|
|
# The assembly implementation of neg didn't check
|
|
# after M-a if a was zero and so while in mod M
|
|
# M ≡ 0 (mod M), the `==` doesn't support unreduced representation.
|
|
var a: Fp[BN254_Snarks]
|
|
var r {.noInit.}: Fp[BN254_Snarks]
|
|
r.neg(a)
|
|
|
|
check: bool r.isZero()
|
|
|
|
test "fromMont doesn't need a final substraction with 256-bit prime (full word used)":
|
|
block:
|
|
var a: Fp[Secp256k1]
|
|
a.mres = Fp[Secp256k1].getMontyPrimeMinus1()
|
|
let expected = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E"
|
|
|
|
var r: BigInt[256]
|
|
r.fromField(a)
|
|
|
|
check: bool(r == expected)
|
|
block:
|
|
var a: Fp[Secp256k1]
|
|
var d: FpDbl[Secp256k1]
|
|
|
|
# Set Montgomery repr to the largest field element in Montgomery Residue form
|
|
a.mres = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E"
|
|
d.limbs2x = (BigInt[512].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E").limbs
|
|
|
|
var r, expected: BigInt[256]
|
|
|
|
r.fromField(a)
|
|
expected.limbs.redc2xMont(d.limbs2x, Secp256k1.Mod().limbs, Fp[Secp256k1].getNegInvModWord(), Fp[Secp256k1].getSpareBits())
|
|
|
|
check: bool(r == expected)
|
|
|
|
test "fromMont doesn't need a final substraction with 255-bit prime (1 spare bit)":
|
|
block:
|
|
var a: Fp[Edwards25519]
|
|
a.mres = Fp[Edwards25519].getMontyPrimeMinus1()
|
|
let expected = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"
|
|
|
|
var r: BigInt[255]
|
|
r.fromField(a)
|
|
|
|
check: bool(r == expected)
|
|
block:
|
|
var a: Fp[Edwards25519]
|
|
var d: FpDbl[Edwards25519]
|
|
|
|
# Set Montgomery repr to the largest field element in Montgomery Residue form
|
|
a.mres = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec"
|
|
d.limbs2x = (BigInt[512].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec").limbs
|
|
|
|
var r, expected: BigInt[255]
|
|
|
|
r.fromField(a)
|
|
expected.limbs.redc2xMont(d.limbs2x, Edwards25519.Mod().limbs, Fp[Edwards25519].getNegInvModWord(), Fp[Edwards25519].getSpareBits())
|
|
|
|
check: bool(r == expected)
|
|
|
|
largeField()
|