constantine/sage/square_root_bls12_377.sage
Mamy Ratsimbazafy 0e4dbfe400
BLS12-377 (#91)
* add Sage for constant time tonelli shanks

* Fused sqrt and invsqrt via Tonelli Shanks

* isolate sqrt in their own folder

* Implement constant-time Tonelli Shanks for any prime

* Implement Fp2 sqrt for any non-residue

* Add tests for BLS12_377

* Lattice decomposition script for BLS12_377 G1

* BLS12-377 G1 GLV ok, G2 GLV issue

* Proper endomorphism acceleration support for BLS12-377

* Add naive pairing support for BLS12-377

* Activate more bench for BLS12-377

* Fix MSB computation

* Optimize final exponentiation + add benches
2020-09-27 09:15:14 +02:00

264 lines
7.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# BLS12-377
# Constant-time Square Root
#
# ############################################################
# Parameters
x = 3 * 2^46 * (7 * 13 * 499) + 1
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
r = x^4 - x^2 + 1
t = x + 1
print('x : ' + x.hex())
print('p : ' + p.hex())
print('r : ' + r.hex())
print('t : ' + t.hex())
def modCheck(p, pow):
## Find q mod 2^s != 1
q = p^pow
s = 4
while q % s == 1:
s *= 2
if s > q:
raise ValueError('Uh Oh')
if pow == 1:
print(f'Found: p mod {s} = {q % s}')
else:
print(f'Found: p^{pow} mod {s} = {q % s}')
modCheck(p, 1) # Found: p mod 140737488355328 = 70368744177665
modCheck(p, 2) # Found: p^2 mod 281474976710656 = 140737488355329
# On Fp
# a^((p-70368744177665+140737488355328)/140737488355328)
# would lead to a square root but there would be
# log2(140737488355328)-1 candidates
# which must be checked constant time
def precomp_tonelli_shanks(p):
## Precompute constants for
## constant-time Tonelli Shanks algorithm
## with q = p^pow returns:
## 1. c1, the largest integer such that 2^c1 divides q - 1.
## 2. c2 = (q - 1) / (2^c1) in
## 3. c3 = (c2 - 1) / 2 in
## 4. c4, a non-square value in Fq
## 5. c5 = c4^c2 in Fq
q = p
c1 = 0
c2 = q-1
while c2 & 1 == 0:
c2 >>= 1
c1 += 1
c3 = (c2 - 1) // 2
c4 = 1
while kronecker(c4, q) == 1:
c4 += 1
c5 = GF(p)(c4)^c2
return (c1,c2,c3,c4,c5)
def ccopy(a, b, ctl):
## `b` if `ctl` is true, `a` if false
return int(not(bool(ctl)))*a + int(bool(ctl))*b
def sqrt_tonelli_shanks(x, p):
## Returns z = x² (p^pow)
(c1, c2, c3, c4, c5) = precomp_tonelli_shanks(p)
x = GF(p)(x)
z = x^c3
t = z*z*x
z *= x
b = t
c = c5
for i in range(c1, 1, -1): # c1 ... 2
for j in range(1, i-1): # 1 ... i-2
b *= b
z = ccopy(z, z*c, b != 1)
c *= c
t = ccopy(t, t*c, b != 1)
b = t
return z
# for a in range(2, 30):
# if kronecker(a, p) != 1:
# continue
# # print(f'{a}^(p-1)/2 = ' + str(GF(p)(a)^((p-1)/2)))
# print(f'{a} is a quadratic residue mod p')
# b = sqrt_tonelli_shanks(a, p)
# # print(f'{b}² = {a} mod p')
# # print('b*b = ' + str(b*b))
# assert b*b == a
# Optimized Tonelli Shanks
# --------------------------------------------------------
# Finite fields
Fp = GF(p)
K2.<u> = PolynomialRing(Fp)
Fp2.<beta> = Fp.extension(u^2+5)
def precomp_ts(Fq):
## From q = p^m with p the prime characteristic of the field Fp^m
##
## Returns (s, e) such as
## q == s * 2^e + 1
s = Fq.order() - 1
e = 0
while s & 1 == 0:
s >>= 1
e += 1
return s, e
def find_any_qnr(Fq):
## Find a quadratic Non-Residue
## in GF(p^m)
qnr = Fq(Fq.gen())
r = Fq.order()
while qnr.is_square():
qnr += 1
return qnr
def sqrt_exponent_precomp(Fq, e):
## Returns precomputation a^((q-1-2^e)/(2*2^e))
##
## With 2^e the largest power of 2 that divides q-1
##
## For all sqrt related functions
## - legendre symbol
## - SQRT
## - inverse SQRT
r = Fq.order()
precomp = (r - 1) >> e # (q-1) / 2^e
precomp = (precomp - 1) >> 1 # ((q-1) / 2^e) - 1) / 2 = (q-1-2^e)/2^e / 2
return precomp
s, e = precomp_ts(Fp)
qnr = find_any_qnr(Fp)
root_unity = qnr^s
exponent = sqrt_exponent_precomp(Fp, e)
# print('tonelli s: 0x' + Integer(s).hex())
print('tonelli e (2-adicity): ' + str(e))
print('tonelli root: 0x' + Integer(root_unity).hex())
print('tonelli exponent: 0x' + Integer(exponent).hex())
def legendre_symbol_impl(a, e, a_pre_exp):
## Legendre symbol χ(a) = a^(q-1)/2
## -1 if a is non-square
## 0 if a is 0
## 1 if a is square
##
## a_pre_exp = a^((q-1-2^e)/(2*2^e))
## with
## s and e, precomputed values
## such as q == s * 2^e + 1
##
## a_pre_exp is used in square root
## and or inverse square root computation
##
## for fused operations
r = a_pre_exp * a_pre_exp # a^((q-1-2^e)/2^e) = a^((q-1)/2^e - 1)
r *= a # a^((q-1)/2^e)
for i in range(0, e-1):
r *= r # a^((q-1)/2)
return r
def legendre_symbol(a):
a_pre_exp = a^exponent
return legendre_symbol_impl(a, e, a_pre_exp)
for a in range(20):
assert kronecker(a, p) == legendre_symbol(GF(p)(a))
def sqrt_tonelli_shanks_impl(a, a_pre_exp, s, e, root_of_unity):
## Square root for any `a` in a field of prime characteristic p
##
## a_pre_exp = a^((q-1-2^e)/(2*2^e))
## with
## s and e, precomputed values
## such as q == s * 2^e + 1
z = a_pre_exp
t = z*z*a
r = z * a
b = t
root = root_of_unity
for i in range(e, 1, -1): # e .. 2
for j in range(1, i-1): # 1 .. i-2
b *= b
doCopy = b != 1
r = ccopy(r, r * root, doCopy)
root *= root
t = ccopy(t, t * root, doCopy)
b = t
return r
def sqrt_tonelli_shanks_opt(a):
a_pre_exp = a^exponent
return sqrt_tonelli_shanks_impl(a, a_pre_exp, s, e, root_unity)
# for a in range(2, 30):
# if kronecker(a, p) != 1:
# continue
# # print(f'{a}^(p-1)/2 = ' + str(GF(p)(a)^((p-1)/2)))
# print(f'{a} is a quadratic residue mod p')
# b = sqrt_tonelli_shanks_opt(GF(p)(a))
# # print(f'{b}² = {a} mod p')
# # print('b*b = ' + str(b*b))
# assert b*b == a
def sqrt_inv_sqrt_tonelli_shanks_impl(a, a_pre_exp, s, e, root_of_unity):
## Square root and inverse square root for any `a` in a field of prime characteristic p
##
## a_pre_exp = a^((q-1-2^e)/(2*2^e))
## with
## s and e, precomputed values
## such as q == s * 2^e + 1
# Implementation
# 1/√a * a = √a
# Notice that in Tonelli Shanks, the result `r` is bootstrapped by "z*a"
# We bootstrap it instead by just z to get invsqrt for free
z = a_pre_exp
t = z*z*a
r = z
b = t
root = root_of_unity
for i in range(e, 1, -1): # e .. 2
for j in range(1, i-1): # 1 .. i-2
b *= b
doCopy = b != 1
r = ccopy(r, r * root, doCopy)
root *= root
t = ccopy(t, t * root, doCopy)
b = t
return r*a, r
def sqrt_invsqrt_tonelli_shanks_opt(a):
a_pre_exp = a^exponent
return sqrt_inv_sqrt_tonelli_shanks_impl(a, a_pre_exp, s, e, root_unity)
for a in range(2, 30):
if kronecker(a, p) != 1:
continue
# print(f'{a}^(p-1)/2 = ' + str(GF(p)(a)^((p-1)/2)))
print(f'{a} is a quadratic residue mod p')
b, invb = sqrt_invsqrt_tonelli_shanks_opt(GF(p)(a))
# print(f'{b}² = {a} mod p')
# print('b*b = ' + str(b*b))
assert b*b == a
assert invb*a == b