mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-28 11:36:17 +00:00
327 lines
11 KiB
Nim
327 lines
11 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
import ../../constantine/platforms/gpu/[llvm, nvidia, bindings/utils]
|
|
|
|
# ############################################################
|
|
#
|
|
# NVVM
|
|
#
|
|
# ############################################################
|
|
|
|
# https://docs.nvidia.com/cuda/libnvvm-api/index.html
|
|
# https://docs.nvidia.com/pdf/libNVVM_API.pdf
|
|
# https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
|
|
# https://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf
|
|
|
|
# ⚠ NVVM IR is based on LLVM 7.0.1 IR which dates from december 2018.
|
|
# There are a couple of caveats:
|
|
# - LLVM 7.0.1 is usually not available in repo, making installation difficult
|
|
# - There was a ABI breaking bug making the 7.0.1 and 7.1.0 versions messy (https://www.phoronix.com/news/LLVM-7.0.1-Released)
|
|
# - LLVM 7.0.1 does not have LLVMBuildCall2 and relies on the deprecated LLVMBuildCall meaning
|
|
# supporting that and latest LLVM (for AMDGPU and SPIR-V backends) will likely have heavy costs
|
|
# - When generating a add-with-carry kernel with inline ASM calls from LLVM-14,
|
|
# if the LLVM IR is passed as bitcode,
|
|
# the kernel content is silently discarded, this does not happen with built-in add.
|
|
# It is unsure if it's call2 or inline ASM incompatibility that causes the issues
|
|
# - When generating a add-with-carry kernel with inline ASM calls from LLVM-14,
|
|
# if the LLVM IR is passed as testual IR, the code is refused with NVVM_ERROR_INVALID_IR
|
|
|
|
# Hence, using LLVM NVPTX backend instead of libNVVM is likely the sustainable way forward
|
|
|
|
static: echo "[Constantine] Using library libnvvm.so"
|
|
{.passl: "-L/opt/cuda/nvvm/lib64 -lnvvm".}
|
|
|
|
type
|
|
NvvmResult* {.size: sizeof(cint).} = enum
|
|
NVVM_SUCCESS = 0
|
|
NVVM_ERROR_OUT_OF_MEMORY = 1
|
|
NVVM_ERROR_PROGRAM_CREATION_FAILURE = 2
|
|
NVVM_ERROR_IR_VERSION_MISMATCH = 3
|
|
NVVM_ERROR_INVALID_INPUT = 4
|
|
NVVM_ERROR_INVALID_PROGRAM = 5
|
|
NVVM_ERROR_INVALID_IR = 6
|
|
NVVM_ERROR_INVALID_OPTION = 7
|
|
NVVM_ERROR_NO_MODULE_IN_PROGRAM = 8
|
|
NVVM_ERROR_COMPILATION = 9
|
|
|
|
NvvmProgram = distinct pointer
|
|
|
|
{.push cdecl, importc, dynlib: "libnvvm.so".}
|
|
|
|
proc nvvmGetErrorString*(r: NvvmResult): cstring
|
|
proc nvvmVersion*(major, minor: var int32): NvvmResult
|
|
proc nvvmIRVersion*(majorIR, minorIR, majorDbg, minorDbg: var int32): NvvmResult
|
|
|
|
proc nvvmCreateProgram*(prog: var NvvmProgram): NvvmResult
|
|
proc nvvmDestroyProgram*(prog: var NvvmProgram): NvvmResult
|
|
proc nvvmAddModuleToProgram*(prog: NvvmProgram, buffer: openArray[byte], name: cstring): NvvmResult {.wrapOpenArrayLenType: csize_t.}
|
|
proc nvvmLazyAddModuleToProgram*(prog: NvvmProgram, buffer: openArray[byte], name: cstring): NvvmResult {.wrapOpenArrayLenType: csize_t.}
|
|
proc nvvmCompileProgram*(prog: NvvmProgram; numOptions: int32; options: cstringArray): NvvmResult
|
|
proc nvvmVerifyProgram*(prog: NvvmProgram; numOptions: int32; options: cstringArray): NvvmResult
|
|
proc nvvmGetCompiledResultSize*(prog: NvvmProgram; bufferSizeRet: var csize_t): NvvmResult
|
|
proc nvvmGetCompiledResult*(prog: NvvmProgram; buffer: ptr char): NvvmResult
|
|
proc nvvmGetProgramLogSize*(prog: NvvmProgram; bufferSizeRet: var csize_t): NvvmResult
|
|
proc nvvmGetProgramLog*(prog: NvvmProgram; buffer: ptr char): NvvmResult
|
|
|
|
{.pop.} # {.push cdecl, importc, header: "<nvvm.h>".}
|
|
|
|
# ############################################################
|
|
#
|
|
# PTX Codegen
|
|
#
|
|
# ############################################################
|
|
|
|
template check*(status: NvvmResult) =
|
|
let code = status # Assign so execution is done once only.
|
|
if code != NVVM_SUCCESS:
|
|
stderr.write astToStr(status) & " " & $instantiationInfo() & " exited with error: " & $code
|
|
quit 1
|
|
|
|
proc getNvvmLog(prog: NvvmProgram): string {.used.} =
|
|
var logSize: csize_t
|
|
check nvvmGetProgramLogSize(prog, logSize)
|
|
|
|
if logSize > 0:
|
|
result = newString(logSize)
|
|
check nvvmGetProgramLog(prog, result[0].addr)
|
|
|
|
proc ptxCodegenViaNvidiaNvvm(module: ModuleRef, sm: tuple[major, minor: int32]): string =
|
|
## PTX codegen via Nvidia NVVM
|
|
|
|
# ######################################
|
|
# LLVM -> NNVM handover
|
|
|
|
var prog{.noInit.}: NvvmProgram
|
|
check nvvmCreateProgram(prog)
|
|
|
|
let bitcode = module.toBitcode()
|
|
check nvvmAddModuleToProgram(prog, bitcode, cstring module.getIdentifier())
|
|
|
|
# ######################################
|
|
# GPU codegen
|
|
|
|
check nvvmVerifyProgram(prog, 0, nil)
|
|
|
|
let options = allocCStringArray(["-arch=compute_" & $sm.major & $sm.minor])
|
|
check nvvmCompileProgram(prog, 1, options)
|
|
deallocCStringArray(options)
|
|
var ptxSize: csize_t
|
|
check nvvmGetCompiledResultSize(prog, ptxSize)
|
|
result = newString(ptxSize-1) # The NNVM size includes '\0' ending char while Nim excludes it.
|
|
check nvvmGetCompiledResult(prog, result[0].addr)
|
|
|
|
check nvvmDestroyProgram(prog)
|
|
|
|
proc ptxCodegenViaLlvmNvptx(module: ModuleRef, sm: tuple[major, minor: int32]): string =
|
|
## PTX codegen via LLVM NVPTX
|
|
|
|
module.verify(AbortProcessAction)
|
|
|
|
initializeFullNVPTXTarget()
|
|
const triple = "nvptx64-nvidia-cuda"
|
|
|
|
let machine = createTargetMachine(
|
|
target = toTarget(triple),
|
|
triple = triple,
|
|
cpu = cstring("sm_" & $sm.major & $sm.minor),
|
|
features = "",
|
|
level = CodeGenLevelAggressive,
|
|
reloc = RelocDefault,
|
|
codeModel = CodeModelDefault
|
|
)
|
|
|
|
machine.emitToString(module, AssemblyFile)
|
|
|
|
# ############################################################
|
|
#
|
|
# Hello world
|
|
#
|
|
# ############################################################
|
|
|
|
echo "Nvidia JIT compiler Hello World"
|
|
|
|
proc writeExampleAddMul(ctx: ContextRef, module: ModuleRef, addKernelName, mulKernelName: string) =
|
|
|
|
# ######################################
|
|
# Metadata
|
|
|
|
const triple = "nvptx64-nvidia-cuda"
|
|
# Datalayout for NVVM IR 1.8 (CUDA 11.6)
|
|
const datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
|
|
|
# ######################################
|
|
# LLVM IR codegen
|
|
|
|
module.setTarget(triple)
|
|
module.setDataLayout(datalayout)
|
|
let i128 = ctx.int128_t()
|
|
let void_t = ctx.void_t()
|
|
|
|
let builder = ctx.createBuilder()
|
|
defer: builder.dispose()
|
|
|
|
block:
|
|
let addType = function_t(void_t, [i128.pointer_t(), i128, i128], isVarArg = LlvmBool(false))
|
|
let addKernel = module.addFunction(addKernelName, addType)
|
|
let blck = ctx.appendBasicBlock(addKernel, "addBody")
|
|
builder.positionAtEnd(blck)
|
|
let r = addKernel.getParam(0)
|
|
let a = addKernel.getParam(1)
|
|
let b = addKernel.getParam(2)
|
|
let sum = builder.add(a, b, "sum")
|
|
builder.store(sum, r)
|
|
builder.retVoid()
|
|
|
|
module.setCallableCudaKernel((addType, addKernel))
|
|
|
|
block:
|
|
let mulType = function_t(void_t, [i128.pointer_t(), i128, i128], isVarArg = LlvmBool(false))
|
|
let mulKernel = module.addFunction(mulKernelName, mulType)
|
|
let blck = ctx.appendBasicBlock(mulKernel, "mulBody")
|
|
builder.positionAtEnd(blck)
|
|
let r = mulKernel.getParam(0)
|
|
let a = mulKernel.getParam(1)
|
|
let b = mulKernel.getParam(2)
|
|
let prod = builder.mul(a, b, "prod")
|
|
builder.store(prod, r)
|
|
builder.retVoid()
|
|
|
|
module.setCallableCudaKernel((mulType, mulKernel))
|
|
|
|
module.verify(AbortProcessAction)
|
|
|
|
block:
|
|
echo "================="
|
|
echo "LLVM IR output"
|
|
echo $module
|
|
echo "================="
|
|
|
|
func toHex*(a: uint64): string =
|
|
const hexChars = "0123456789abcdef"
|
|
const L = 2*sizeof(uint64)
|
|
result = newString(L)
|
|
var a = a
|
|
for j in countdown(result.len-1, 0):
|
|
result[j] = hexChars[a and 0xF]
|
|
a = a shr 4
|
|
|
|
func toString*(a: openArray[uint64]): string =
|
|
result = "0x"
|
|
for i in countdown(a.len-1, 0):
|
|
result.add toHex(a[i])
|
|
|
|
type
|
|
CodegenBackend = enum
|
|
PTXviaNvidiaNvvm
|
|
PTXviaLlvmNvptx
|
|
|
|
proc getCudaKernel(cuMod: CUmodule, fnName: string): CUfunction =
|
|
check cuModuleGetFunction(result, cuMod, fnName & "_public")
|
|
|
|
proc main(backend: CodegenBackend) =
|
|
|
|
#######################################
|
|
# GPU init
|
|
let cudaDevice = cudaDeviceInit()
|
|
var sm: tuple[major, minor: int32]
|
|
check cuDeviceGetAttribute(sm.major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cudaDevice)
|
|
check cuDeviceGetAttribute(sm.minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cudaDevice)
|
|
|
|
#######################################
|
|
# LLVM IR
|
|
let ctx = createContext()
|
|
let module = ctx.createModule("test_nnvm")
|
|
|
|
let addKernelName = "addKernel"
|
|
let mulKernelName = "mulKernel"
|
|
|
|
writeExampleAddMul(ctx, module, addKernelName, mulKernelName)
|
|
|
|
#######################################
|
|
# PTX codegen
|
|
let ptx = case backend
|
|
of PTXviaNvidiaNvvm:
|
|
module.ptxCodegenViaNvidiaNVVM(sm)
|
|
of PTXviaLlvmNvptx:
|
|
module.ptxCodegenViaLlvmNvptx(sm)
|
|
|
|
module.dispose()
|
|
ctx.dispose()
|
|
|
|
block:
|
|
echo "================="
|
|
echo "PTX output"
|
|
echo $ptx
|
|
echo "================="
|
|
|
|
#######################################
|
|
# GPU JIT
|
|
var cuCtx: CUcontext
|
|
var cuMod: CUmodule
|
|
check cuCtxCreate(cuCtx, 0, cudaDevice)
|
|
check cuModuleLoadData(cuMod, ptx)
|
|
let addKernel = cuMod.getCudaKernel(addKernelName)
|
|
let mulKernel = cuMod.getCudaKernel(mulKernelName)
|
|
|
|
#######################################
|
|
# Kernel launch
|
|
var r{.noInit.}, a, b: array[2, uint64]
|
|
|
|
a[1] = 0x00000000000001FF'u64; a[0] = 0xFFFFFFFFFFFFFFFF'u64
|
|
b[1] = 0x0000000000000000'u64; b[0] = 0x0010000000000000'u64
|
|
|
|
echo "r: ", r.toString()
|
|
echo "a: ", a.toString()
|
|
echo "b: ", b.toString()
|
|
|
|
var rGPU: CUdeviceptr
|
|
check cuMemAlloc(rGPU, csize_t sizeof(r))
|
|
|
|
let params = [pointer(rGPU.addr), pointer(a.addr), pointer(b.addr)]
|
|
|
|
check cuLaunchKernel(
|
|
addKernel,
|
|
1, 1, 1,
|
|
1, 1, 1,
|
|
0, CUstream(nil),
|
|
params[0].unsafeAddr, nil)
|
|
|
|
check cuMemcpyDtoH(r.addr, rGPU, csize_t sizeof(r))
|
|
echo "a+b: ", r.toString()
|
|
|
|
check cuLaunchKernel(
|
|
mulKernel,
|
|
1, 1, 1,
|
|
1, 1, 1,
|
|
0, CUstream(nil),
|
|
params[0].unsafeAddr, nil)
|
|
|
|
check cuMemcpyDtoH(r.addr, rGPU, csize_t sizeof(r))
|
|
echo "a*b: ", r.toString()
|
|
|
|
#######################################
|
|
# Cleanup
|
|
|
|
check cuMemFree(rGPU)
|
|
rGPU = CUdeviceptr(nil)
|
|
|
|
check cuModuleUnload(cuMod)
|
|
cuMod = CUmodule(nil)
|
|
|
|
check cuCtxDestroy(cuCtx)
|
|
cuCtx = CUcontext(nil)
|
|
|
|
echo "\n\nCompilation via Nvidia NVVM\n###########################\n"
|
|
main(PTXviaNvidiaNvvm)
|
|
echo "\n\nEnd: Compilation via Nvidia NVVM\n################################"
|
|
|
|
echo "\n\nCompilation via LLVM NVPTX\n##########################\n"
|
|
main(PTXviaLlvmNvptx)
|
|
echo "\n\nEnd: Compilation via LLVM NVPTX\n###############################"
|