148 lines
4.8 KiB
Python
148 lines
4.8 KiB
Python
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
# ############################################################
|
||
#
|
||
# BLS12-381
|
||
# Frobenius Endomorphism
|
||
# Untwist-Frobenius-Twist isogeny
|
||
#
|
||
# ############################################################
|
||
|
||
# Parameters
|
||
x = Integer('0x44E992B44A6909F1')
|
||
p = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1
|
||
r = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1
|
||
t = 6*x^2 + 1
|
||
cofactor = 1
|
||
print('p : ' + p.hex())
|
||
print('r : ' + r.hex())
|
||
print('t : ' + t.hex())
|
||
|
||
# Finite fields
|
||
Fp = GF(p)
|
||
K2.<u> = PolynomialRing(Fp)
|
||
Fp2.<beta> = Fp.extension(u^2+1)
|
||
# K6.<v> = PolynomialRing(F2)
|
||
# Fp6.<eta> = Fp2.extension(v^3-Fp2([9, 1]))
|
||
# K12.<w> = PolynomialRing(Fp6)
|
||
# K12.<gamma> = F6.extension(w^2-eta)
|
||
|
||
# Curves
|
||
b = 3
|
||
SNR = Fp2([9, 1])
|
||
G1 = EllipticCurve(Fp, [0, b])
|
||
G2 = EllipticCurve(Fp2, [0, b/SNR])
|
||
|
||
# Utilities
|
||
def fp2_to_hex(a):
|
||
v = vector(a)
|
||
return Integer(v[0]).hex() + ' + β * ' + Integer(v[1]).hex()
|
||
|
||
# Frobenius constants (D type: use SNR, M type use 1/SNR)
|
||
FrobConst_psi = SNR^((p-1)/6)
|
||
FrobConst_psi_2 = FrobConst_psi * FrobConst_psi
|
||
FrobConst_psi_3 = FrobConst_psi_2 * FrobConst_psi
|
||
print('FrobConst_psi : ' + fp2_to_hex(FrobConst_psi))
|
||
print('FrobConst_psi_2 : ' + fp2_to_hex(FrobConst_psi_2))
|
||
print('FrobConst_psi_3 : ' + fp2_to_hex(FrobConst_psi_3))
|
||
|
||
print('')
|
||
FrobConst_psi2_2 = FrobConst_psi_2 * FrobConst_psi_2^p
|
||
FrobConst_psi2_3 = FrobConst_psi_3 * FrobConst_psi_3^p
|
||
print('FrobConst_psi2_2 : ' + fp2_to_hex(FrobConst_psi2_2))
|
||
print('FrobConst_psi2_3 : ' + fp2_to_hex(FrobConst_psi2_3))
|
||
|
||
print('')
|
||
FrobConst_psi3_2 = FrobConst_psi_2 * FrobConst_psi2_2^p
|
||
FrobConst_psi3_3 = FrobConst_psi_3 * FrobConst_psi2_3^p
|
||
print('FrobConst_psi3_2 : ' + fp2_to_hex(FrobConst_psi3_2))
|
||
print('FrobConst_psi3_3 : ' + fp2_to_hex(FrobConst_psi3_3))
|
||
|
||
# Recap, with ξ (xi) the sextic non-residue
|
||
# psi_2 = (ξ^((p-1)/6))^2 = ξ^((p-1)/3)
|
||
# psi_3 = psi_2 * ξ^((p-1)/6) = ξ^((p-1)/3) * ξ^((p-1)/6) = ξ^((p-1)/2)
|
||
#
|
||
# Reminder, in 𝔽p2, frobenius(a) = a^p = conj(a)
|
||
# psi2_2 = psi_2 * psi_2^p = ξ^((p-1)/3) * ξ^((p-1)/3)^p = ξ^((p-1)/3) * frobenius(ξ)^((p-1)/3)
|
||
# = norm(ξ)^((p-1)/3)
|
||
# psi2_3 = psi_3 * psi_3^p = ξ^((p-1)/2) * ξ^((p-1)/2)^p = ξ^((p-1)/2) * frobenius(ξ)^((p-1)/2)
|
||
# = norm(ξ)^((p-1)/2)
|
||
#
|
||
# In Fp²:
|
||
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
|
||
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||
#
|
||
# We have norm(ξ)^((p-1)/2) = (ξ*frobenius(ξ))^((p-1)/2) = (ξ*(ξ^p))^((p-1)/2) = ξ^(p+1)^(p-1)/2
|
||
# = ξ^((p²-1)/2)
|
||
# And ξ^((p²-1)/2) ≡ -1 (mod p²)
|
||
# So psi2_3 ≡ -1 (mod p²)
|
||
|
||
# Frobenius Fp2
|
||
A = Fp2([5, 7])
|
||
Aconj = Fp2([5, -7])
|
||
AF = A.frobenius(1) # or pth_power(1)
|
||
AF2 = A.frobenius(2)
|
||
AF3 = A.frobenius(3)
|
||
print('')
|
||
print('A : ' + fp2_to_hex(A))
|
||
print('A conjugate: ' + fp2_to_hex(Aconj))
|
||
print('')
|
||
print('AF1 : ' + fp2_to_hex(AF))
|
||
print('AF2 : ' + fp2_to_hex(AF2))
|
||
print('AF3 : ' + fp2_to_hex(AF3))
|
||
|
||
def psi(P):
|
||
(Px, Py, Pz) = P
|
||
return G2([
|
||
FrobConst_psi_2 * Px.frobenius(),
|
||
FrobConst_psi_3 * Py.frobenius()
|
||
# Pz.frobenius() - Always 1 after extract
|
||
])
|
||
|
||
def psi2(P):
|
||
(Px, Py, Pz) = P
|
||
return G2([
|
||
FrobConst_psi2_2 * Px.frobenius(2),
|
||
FrobConst_psi2_3 * Py.frobenius(2)
|
||
# Pz - Always 1 after extract
|
||
])
|
||
|
||
# Test generator
|
||
set_random_seed(1337)
|
||
|
||
# Vectors
|
||
print('\nTest vectors:')
|
||
for i in range(4):
|
||
P = G2.random_point()
|
||
|
||
(Px, Py, Pz) = P
|
||
vPx = vector(Px)
|
||
vPy = vector(Py)
|
||
# vPz = vector(Pz)
|
||
print(f'\nTest {i}')
|
||
print(' Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
||
print(' Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
||
# print(' Pz: ' + Integer(vPz[0]).hex() + ' + β * ' + Integer(vPz[1]).hex())
|
||
|
||
# Galbraith-Lin-Scott, 2008, Theorem 1
|
||
# Fuentes-Castaneda et al, 2011, Equation (2)
|
||
assert psi(psi(P)) - t*psi(P) + p*P == G2([0, 1, 0])
|
||
|
||
# Galbraith-Scott, 2008, Lemma 1
|
||
# k-th cyclotomic polynomial with k = 12
|
||
assert psi2(psi2(P)) - psi2(P) + P == G2([0, 1, 0])
|
||
|
||
assert psi(psi(P)) == psi2(P)
|
||
|
||
(Qx, Qy, Qz) = psi(P)
|
||
vQx = vector(Qx)
|
||
vQy = vector(Qy)
|
||
print(' Qx: ' + Integer(vQx[0]).hex() + ' + β * ' + Integer(vQx[1]).hex())
|
||
print(' Qy: ' + Integer(vQy[0]).hex() + ' + β * ' + Integer(vQy[1]).hex())
|