mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-15 21:44:15 +00:00
e5612f5705
* unoptimized msm * MSM: reorder loops * add a signed windowed recoding technique * improve wNAF table access * use batchAffine * revamp EC tests * MSM signed digit support * refactor MSM: recode signed ahead of time * missing test vector * refactor allocs and Alloca sideeffect * add an endomorphism threshold * Add Jacobian extended coordinates * refactor recodings, prepare for parallelizable on-the-fly signed recoding * recoding changes, introduce proper NAF for pairings * more pairings refactoring, introduce miller accumulator for EVM * some optim to the addchain miller loop * start optimizing multi-pairing * finish multi-miller loop refactoring * minor tuning * MSM: signed encoding suitable for parallelism (no precompute) * cleanup signed window encoding * add prefetching * add metering * properly init result to infinity * comment on prefetching * introduce vartime inversion for batch additions * fix JacExt infinity conversion * add batchAffine for MSM, though slower than JacExtended at the moment * add a batch affine scheduler for MSM * Add Multi-Scalar-Multiplication endomorphism acceleration * some tuning * signed integer fixes + 32-bit + tuning * Some more tuning * common msm bench + don't use affine for c < 9 * nit
310 lines
9.6 KiB
Nim
310 lines
9.6 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
# ############################################################
|
||
#
|
||
# Benchmark of pairings
|
||
#
|
||
# ############################################################
|
||
|
||
import
|
||
# Internals
|
||
../constantine/platforms/abstractions,
|
||
../constantine/math/config/curves,
|
||
../constantine/math/arithmetic,
|
||
../constantine/math/extension_fields,
|
||
../constantine/math/ec_shortweierstrass,
|
||
../constantine/math/constants/zoo_subgroups,
|
||
../constantine/math/pairings/[
|
||
cyclotomic_subgroups,
|
||
lines_eval,
|
||
pairings_bls12,
|
||
pairings_bn
|
||
],
|
||
../constantine/math/constants/zoo_pairings,
|
||
# Helpers
|
||
../helpers/prng_unsafe,
|
||
./bench_blueprint
|
||
|
||
export abstractions
|
||
export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225
|
||
export notes
|
||
proc separator*() = separator(132)
|
||
|
||
proc report(op, curve: string, startTime, stopTime: MonoTime, startClk, stopClk: int64, iters: int) =
|
||
let ns = inNanoseconds((stopTime-startTime) div iters)
|
||
let throughput = 1e9 / float64(ns)
|
||
when SupportsGetTicks:
|
||
echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)"
|
||
else:
|
||
echo &"{op:<40} {curve:<15} {throughput:>15.3f} ops/s {ns:>9} ns/op"
|
||
|
||
template bench(op: string, C: static Curve, iters: int, body: untyped): untyped =
|
||
measure(iters, startTime, stopTime, startClk, stopClk, body)
|
||
report(op, $C, startTime, stopTime, startClk, stopClk, iters)
|
||
|
||
func clearCofactor[F; G: static Subgroup](
|
||
ec: var ECP_ShortW_Aff[F, G]) =
|
||
# For now we don't have any affine operation defined
|
||
var t {.noInit.}: ECP_ShortW_Prj[F, G]
|
||
t.fromAffine(ec)
|
||
t.clearCofactor()
|
||
ec.affine(t)
|
||
|
||
func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} =
|
||
result = rng.random_unsafe(EC)
|
||
result.clearCofactor()
|
||
|
||
proc lineDoubleBench*(C: static Curve, iters: int) =
|
||
var line: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
bench("Line double", C, iters):
|
||
line.line_double(T, P)
|
||
|
||
proc lineAddBench*(C: static Curve, iters: int) =
|
||
var line: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let
|
||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
||
bench("Line add", C, iters):
|
||
line.line_add(T, Q, P)
|
||
|
||
proc mulFp12byLine_Bench*(C: static Curve, iters: int) =
|
||
var line: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
line.line_double(T, P)
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("Mul 𝔽p12 by line", C, iters):
|
||
f.mul_by_line(line)
|
||
|
||
proc mulLinebyLine_Bench*(C: static Curve, iters: int) =
|
||
var l0, l1: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
l0.line_double(T, P)
|
||
l1.line_double(T, P)
|
||
var f {.noInit.}: Fp12[C]
|
||
|
||
bench("Mul line by line", C, iters):
|
||
f.prod_from_2_lines(l0, l1)
|
||
|
||
proc mulFp12by_prod2lines_Bench*(C: static Curve, iters: int) =
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
let g = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("Mul 𝔽p12 by product of 2 lines", C, iters):
|
||
f.mul_by_prod_of_2_lines(g)
|
||
|
||
proc mulFp12_by_2lines_v1_Bench*(C: static Curve, iters: int) =
|
||
var l0, l1: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
l0.line_double(T, P)
|
||
l1.line_double(T, P)
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("mulFp12 by 2 lines v1", C, iters):
|
||
f.mul_by_line(l0)
|
||
f.mul_by_line(l1)
|
||
|
||
proc mulFp12_by_2lines_v2_Bench*(C: static Curve, iters: int) =
|
||
var l0, l1: Line[Fp2[C]]
|
||
var T = rng.random_point(ECP_ShortW_Prj[Fp2[C], G2])
|
||
let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
l0.line_double(T, P)
|
||
l1.line_double(T, P)
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("mulFp12 by 2 lines v2", C, iters):
|
||
var f2 {.noInit.}: Fp12[C]
|
||
f2.prod_from_2_lines(l0, l1)
|
||
f.mul_by_prod_of_2_lines(f2)
|
||
|
||
proc mulBench*(C: static Curve, iters: int) =
|
||
var r: Fp12[C]
|
||
let x = rng.random_unsafe(Fp12[C])
|
||
let y = rng.random_unsafe(Fp12[C])
|
||
preventOptimAway(r)
|
||
bench("Multiplication 𝔽p12", C, iters):
|
||
r.prod(x, y)
|
||
|
||
proc sqrBench*(C: static Curve, iters: int) =
|
||
var r: Fp12[C]
|
||
let x = rng.random_unsafe(Fp12[C])
|
||
preventOptimAway(r)
|
||
bench("Squaring 𝔽p12", C, iters):
|
||
r.square(x)
|
||
|
||
proc cyclotomicSquare_Bench*(C: static Curve, iters: int) =
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("Squaring 𝔽p12 in cyclotomic subgroup", C, iters):
|
||
f.cyclotomic_square()
|
||
|
||
proc expCurveParamBench*(C: static Curve, iters: int) =
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
|
||
bench("Cyclotomic Exp by curve parameter", C, iters):
|
||
f.cycl_exp_by_curve_param(f)
|
||
|
||
proc cyclotomicSquareCompressed_Bench*(C: static Curve, iters: int) =
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
var g: G2345[Fp2[C]]
|
||
g.fromFpk(f)
|
||
|
||
bench("Cyclotomic Compressed Squaring 𝔽p12", C, iters):
|
||
g.cyclotomic_square_compressed()
|
||
|
||
proc cyclotomicDecompression_Bench*(C: static Curve, iters: int) =
|
||
var f = rng.random_unsafe(Fp12[C])
|
||
var gs: array[1, G2345[Fp2[C]]]
|
||
gs[0].fromFpk(f)
|
||
|
||
var g1s_ratio: array[1, tuple[g1_num, g1_den: Fp2[C]]]
|
||
var g0s, g1s: array[1, Fp2[C]]
|
||
|
||
bench("Cyclotomic Decompression 𝔽p12", C, iters):
|
||
recover_g1(g1s_ratio[0].g1_num, g1s_ratio[0].g1_den, gs[0])
|
||
g1s.batch_ratio_g1s(g1s_ratio)
|
||
g0s[0].recover_g0(g1s[0], gs[0])
|
||
|
||
proc millerLoopBLS12Bench*(C: static Curve, iters: int) =
|
||
let
|
||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
||
|
||
var f: Fp12[C]
|
||
bench("Miller Loop BLS12", C, iters):
|
||
f.millerLoopGenericBLS12(Q, P)
|
||
|
||
proc millerLoopBNBench*(C: static Curve, iters: int) =
|
||
let
|
||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
||
|
||
var f: Fp12[C]
|
||
bench("Miller Loop BN", C, iters):
|
||
f.millerLoopGenericBN(Q, P)
|
||
|
||
proc finalExpEasyBench*(C: static Curve, iters: int) =
|
||
var r = rng.random_unsafe(Fp12[C])
|
||
bench("Final Exponentiation Easy", C, iters):
|
||
r.finalExpEasy()
|
||
|
||
proc finalExpHardBLS12Bench*(C: static Curve, iters: int) =
|
||
var r = rng.random_unsafe(Fp12[C])
|
||
r.finalExpEasy()
|
||
bench("Final Exponentiation Hard BLS12", C, iters):
|
||
r.finalExpHard_BLS12()
|
||
|
||
proc finalExpHardBNBench*(C: static Curve, iters: int) =
|
||
var r = rng.random_unsafe(Fp12[C])
|
||
r.finalExpEasy()
|
||
bench("Final Exponentiation Hard BN", C, iters):
|
||
r.finalExpHard_BN()
|
||
|
||
proc finalExpBLS12Bench*(C: static Curve, iters: int) =
|
||
var r = rng.random_unsafe(Fp12[C])
|
||
bench("Final Exponentiation BLS12", C, iters):
|
||
r.finalExpEasy()
|
||
r.finalExpHard_BLS12()
|
||
|
||
proc finalExpBNBench*(C: static Curve, iters: int) =
|
||
var r = rng.random_unsafe(Fp12[C])
|
||
bench("Final Exponentiation BN", C, iters):
|
||
r.finalExpEasy()
|
||
r.finalExpHard_BN()
|
||
|
||
proc pairingBLS12Bench*(C: static Curve, iters: int) =
|
||
let
|
||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BLS12", C, iters):
|
||
f.pairing_bls12(P, Q)
|
||
|
||
proc pairing_multisingle_BLS12Bench*(C: static Curve, N: static int, iters: int) =
|
||
var
|
||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
|
||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
|
||
|
||
GTs {.noInit.}: array[N, Fp12[C]]
|
||
|
||
for i in 0 ..< N:
|
||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BLS12 non-batched: " & $N, C, iters):
|
||
for i in 0 ..< N:
|
||
GTs[i].pairing_bls12(Ps[i], Qs[i])
|
||
|
||
f = GTs[0]
|
||
for i in 1 ..< N:
|
||
f *= GTs[i]
|
||
|
||
proc pairing_multipairing_BLS12Bench*(C: static Curve, N: static int, iters: int) =
|
||
var
|
||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
|
||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
|
||
|
||
for i in 0 ..< N:
|
||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BLS12 batched: " & $N, C, iters):
|
||
f.pairing_bls12(Ps, Qs)
|
||
|
||
proc pairingBNBench*(C: static Curve, iters: int) =
|
||
let
|
||
P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1])
|
||
Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2])
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BN", C, iters):
|
||
f.pairing_bn(P, Q)
|
||
|
||
proc pairing_multisingle_BNBench*(C: static Curve, N: static int, iters: int) =
|
||
var
|
||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
|
||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
|
||
|
||
GTs {.noInit.}: array[N, Fp12[C]]
|
||
|
||
for i in 0 ..< N:
|
||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BN non-batched: " & $N, C, iters):
|
||
for i in 0 ..< N:
|
||
GTs[i].pairing_bn(Ps[i], Qs[i])
|
||
|
||
f = GTs[0]
|
||
for i in 1 ..< N:
|
||
f *= GTs[i]
|
||
|
||
proc pairing_multipairing_BNBench*(C: static Curve, N: static int, iters: int) =
|
||
var
|
||
Ps {.noInit.}: array[N, ECP_ShortW_Aff[Fp[C], G1]]
|
||
Qs {.noInit.}: array[N, ECP_ShortW_Aff[Fp2[C], G2]]
|
||
|
||
for i in 0 ..< N:
|
||
Ps[i] = rng.random_unsafe(typeof(Ps[0]))
|
||
Qs[i] = rng.random_unsafe(typeof(Qs[0]))
|
||
|
||
var f: Fp12[C]
|
||
bench("Pairing BN batched: " & $N, C, iters):
|
||
f.pairing_bn(Ps, Qs)
|