* Add MultiScalar recoding from "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication" by Faz et al * precompute cube root of unity - Add VM precomputation of Fp - workaround upstream bug https://github.com/nim-lang/Nim/issues/14585 * Add the φ-accelerated lookup table builder * Add a dedicated bithacks file * cosmetic import consistency * Build the φ precompute table with n-1 EC additions instead of 2^(n-1) additions * remove binary * Add the GLV precomputations to the sage scripts * You can't avoid it, bigint multiplication is needed at one point * Add bigint multiplication discarding some low words * Implement the lattice decomposition in sage * Proper decomposition for BN254 * Prepare the code for a new scalar mul * We compile, and now debugging hunt * More helpers to debug GLV scalar Mul * Fix conditional negation * Endomorphism accelerated scalar mul working for BN254 curve * Implement endomorphism acceleration for BLS12-381 (needed cofactor clearing of the point) * fix nimble test script after bench rename
Constantine - Constant Time Elliptic Curve Cryptography
This library provides constant-time implementation of elliptic curve cryptography.
Warning ⚠️: The library is in development state and cannot be used at the moment except as a showcase or to start a discussion on modular big integers internals.
Installation
You can install the developement version of the library through nimble with the following command
nimble install https://github.com/mratsim/constantine@#master
For speed it is recommended to prefer Clang, MSVC or ICC over GCC. GCC does not properly optimize add-with-carry and sub-with-borrow loops (see Compiler-caveats).
Further if using GCC, GCC 7 at minimum is required, previous versions generated incorrect add-with-carry code.
Target audience
The library aims to be a portable, compact and hardened library for elliptic curve cryptography needs, in particular for blockchain protocols and zero-knowledge proofs system.
The library focuses on following properties:
- constant-time (not leaking secret data via side-channels)
- performance
- generated code size, datatype size and stack usage
in this order
Curves supported
At the moment the following curves are supported, adding a new curve only requires adding the prime modulus and its bitsize in constantine/config/curves.nim.
The following curves are configured:
ECDH / ECDSA curves
- NIST P-224
- Curve25519
- NIST P-256 / Secp256r1
- Secp256k1 (Bitcoin, Ethereum 1)
Pairing-Friendly curves
Families:
- BN: Barreto-Naerig
- BLS: Barreto-Lynn-Scott
- FKM: Fotiadis-Konstantinou-Martindale
Curves:
- BN254 (Zero-Knowledge Proofs, Snarks, Starks, Zcash, Ethereum 1)
- BLS12-377 (Zexe)
- BLS12-381 (Algorand, Chia Networks, Dfinity, Ethereum 2, Filecoin, Zcash Sapling)
- BN446
- FKM12-447
- BLS12-461
- BN462
Security
Hardening an implementation against all existing and upcoming attack vectors is an extremely complex task. The library is provided as is, without any guarantees at least until:
- it gets audited
- formal proofs of correctness are produced
- formal verification of constant-time implementation is possible
Defense against common attack vectors are provided on a best effort basis.
Attackers may go to great lengths to retrieve secret data including:
- Timing the time taken to multiply on an elliptic curve
- Analysing the power usage of embedded devices
- Detecting cache misses when using lookup tables
- Memory attacks like page-faults, allocators, memory retention attacks
This is would be incomplete without mentioning that the hardware, OS and compiler actively hinder you by:
- Hardware: sometimes not implementing multiplication in constant-time.
- OS: not providing a way to prevent memory paging to disk, core dumps, a debugger attaching to your process or a context switch (coroutines) leaking register data.
- Compiler: optimizing away your carefully crafted branchless code and leaking server secrets or optimizing away your secure erasure routine which is "useless" because at the end of the function the data is not used anymore.
A growing number of attack vectors is being collected for your viewing pleasure at https://github.com/mratsim/constantine/wiki/Constant-time-arithmetics
Disclaimer
Constantine's authors do their utmost to implement a secure cryptographic library in particular against remote attack vectors like timing attacks.
Please note that Constantine is provided as-is without guarantees. Use at your own risks.
Thorough evaluation of your threat model, the security of any cryptographic library you are considering, and the secrets you put in jeopardy is strongly advised before putting data at risk. The author would like to remind users that the best code can only mitigate but not protect against human failures which are the weakest link and largest backdoors to secrets exploited today.
Security disclosure
TODO
Performance
High-performance is a sought out property. Note that security and side-channel resistance takes priority over performance.
New applications of elliptic curve cryptography like zero-knowledge proofs or proof-of-stake based blockchain protocols are bottlenecked by cryptography.
In blockchain
Ethereum 2 clients spent or use to spend anywhere between 30% to 99% of their processing time verifying the signatures of block validators on R&D testnets Assuming we want nodes to handle a thousand peers, if a cryptographic pairing takes 1ms, that represents 1s of cryptography per block to sign with a target block frequency of 1 every 6 seconds.
In zero-knowledge proofs
According to https://medium.com/loopring-protocol/zksnark-prover-optimizations-3e9a3e5578c0 a 16-core CPU can prove 20 transfers/second or 10 transactions/second. The previous implementation was 15x slower and one of the key optimizations was changing the elliptic curve cryptography backend. It had a direct implication on hardware cost and/or cloud computing resources required.
Measuring performance
To measure the performance of Constantine
git clone https://github.com/mratsim/constantine
nimble bench_fp_clang
nimble bench_fp2_clang
As mentioned in the Compiler caveats section, GCC is up to 2x slower than Clang due to mishandling of carries and register usage.
On my machine, for selected benchmarks on the prime field for popular pairing-friendly curves.
⚠️ Measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them.
==========================================================================================================
All benchmarks are using constant-time implementations to protect against side-channel attacks.
Compiled with Clang
Running on Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz (overclocked all-core Turbo @4.1GHz)
--------------------------------------------------------------------------------
Addition Fp[BN254] 0 ns 0 cycles
Substraction Fp[BN254] 0 ns 0 cycles
Negation Fp[BN254] 0 ns 0 cycles
Multiplication Fp[BN254] 21 ns 65 cycles
Squaring Fp[BN254] 18 ns 55 cycles
Inversion Fp[BN254] 6266 ns 18799 cycles
--------------------------------------------------------------------------------
Addition Fp[BLS12_381] 0 ns 0 cycles
Substraction Fp[BLS12_381] 0 ns 0 cycles
Negation Fp[BLS12_381] 0 ns 0 cycles
Multiplication Fp[BLS12_381] 45 ns 136 cycles
Squaring Fp[BLS12_381] 39 ns 118 cycles
Inversion Fp[BLS12_381] 15683 ns 47050 cycles
--------------------------------------------------------------------------------
Notes:
GCC is significantly slower than Clang on multiprecision arithmetic.
The simplest operations might be optimized away by the compiler.
Compiler caveats
Unfortunately compilers and in particular GCC are not very good at optimizing big integers and/or cryptographic code even when using intrinsics like addcarry_u64
.
Compilers with proper support of addcarry_u64
like Clang, MSVC and ICC
may generate code up to 20~25% faster than GCC.
This is explained by the GMP team: https://gmplib.org/manual/Assembly-Carry-Propagation.html and can be reproduced with the following C code.
See https://gcc.godbolt.org/z/2h768y
#include <stdint.h>
#include <x86intrin.h>
void add256(uint64_t a[4], uint64_t b[4]){
uint8_t carry = 0;
for (int i = 0; i < 4; ++i)
carry = _addcarry_u64(carry, a[i], b[i], &a[i]);
}
GCC
add256:
movq (%rsi), %rax
addq (%rdi), %rax
setc %dl
movq %rax, (%rdi)
movq 8(%rdi), %rax
addb $-1, %dl
adcq 8(%rsi), %rax
setc %dl
movq %rax, 8(%rdi)
movq 16(%rdi), %rax
addb $-1, %dl
adcq 16(%rsi), %rax
setc %dl
movq %rax, 16(%rdi)
movq 24(%rsi), %rax
addb $-1, %dl
adcq %rax, 24(%rdi)
ret
Clang
add256:
movq (%rsi), %rax
addq %rax, (%rdi)
movq 8(%rsi), %rax
adcq %rax, 8(%rdi)
movq 16(%rsi), %rax
adcq %rax, 16(%rdi)
movq 24(%rsi), %rax
adcq %rax, 24(%rdi)
retq
Inline assembly
Constantine uses inline assembly for a very restricted use-case: "conditional mov", and a temporary use-case "hardware 128-bit division" that will be replaced ASAP (as hardware division is not constant-time).
Using intrinsics otherwise significantly improve code readability, portability, auditability and maintainability.
Future optimizations
In the future more inline assembly primitives might be added provided the performance benefit outvalues the significant complexity.
In particular, multiprecision multiplication and squaring on x86 can use the instructions MULX, ADCX and ADOX
to multiply-accumulate on 2 carry chains in parallel (with instruction-level parallelism)
and improve performance by 15~20% over an uint128-based implementation.
As no compiler is able to generate such code even when using the _mulx_u64
and _addcarryx_u64
intrinsics,
either the assembly for each supported bigint size must be hardcoded
or a "compiler" must be implemented in macros that will generate the required inline assembly at compile-time.
Such a compiler can also be used to overcome GCC codegen deficiencies, here is an example for add-with-carry: https://github.com/mratsim/finite-fields/blob/d7f6d8bb/macro_add_carry.nim
Sizes: code size, stack usage
Thanks to 10x smaller key sizes for the same security level as RSA, elliptic curve cryptography is widely used on resource-constrained devices.
Constantine is actively optimize for code-size and stack usage. Constantine does not use heap allocation.
At the moment Constantine is optimized for 32-bit and 64-bit CPUs.
When performance and code size conflicts, a careful and informed default is chosen.
In the future, a compile-time flag that goes beyond the compiler -Os
might be provided.
Example tradeoff
Unrolling Montgomery Multiplication brings about 15% performance improvement which translate to ~15% on all operations in Constantine as field multiplication bottlenecks all cryptographic primitives. This is considered a worthwhile tradeoff on all but the most constrained CPUs with those CPUs probably being 8-bit or 16-bit.
License
Licensed and distributed under either of
- MIT license: LICENSE-MIT or http://opensource.org/licenses/MIT
or
- Apache License, Version 2.0, (LICENSE-APACHEv2 or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This file may not be copied, modified, or distributed except according to those terms.