Mamy Ratsimbazafy 54887b1777
[Research] KZG polynomial commitment - part 1 FFT (#151)
* FFT compiles, now on to debugging ... [skip CI]

* Fix FFT and add bench [skip ci]

* rename + add KZG resources

* rename fft_fr

* Implement FFT on elliptic curves =)

* FFT G1 bench
2021-02-06 22:11:17 +01:00

48 lines
1.6 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
std/macros,
../../constantine/config/[curves, common],
../../constantine/[arithmetic, primitives],
../../constantine/io/io_fields
# TODO automate this
# we can precompute everything in Sage
# and auto-generate the file.
const BLS12_381_Fr_primitive_root = 5
func buildRootLUT(F: type Fr): array[32, F] =
## [pow(PRIMITIVE_ROOT, (MODULUS - 1) // (2**i), MODULUS) for i in range(32)]
var exponent {.noInit.}: BigInt[F.C.getCurveOrderBitwidth()]
exponent = F.C.getCurveOrder()
exponent -= One
# Start by the end
var i = result.len - 1
exponent.shiftRight(i)
result[i].fromUint(BLS12_381_Fr_primitive_root)
result[i].powUnsafeExponent(exponent)
while i > 0:
result[i-1].square(result[i])
dec i
# debugEcho "Fr[BLS12_81] - Roots of Unity:"
# for i in 0 ..< result.len:
# debugEcho " ", i, ": ", result[i].toHex()
# debugEcho "Fr[BLS12_81] - Roots of Unity -- FIN\n"
let BLS12_381_Fr_ScaleToRootOfUnity* = buildRootLUT(Fr[BLS12_381])
{.experimental: "dynamicBindSym".}
macro scaleToRootOfUnity*(C: static Curve): untyped =
return bindSym($C & "_Fr_ScaleToRootOfUnity")