constantine/tests/math/t_finite_fields_sqrt.nim

203 lines
6.0 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/[tables, unittest, times],
# Internal
../../constantine/platforms/abstractions,
../../constantine/math/arithmetic,
../../constantine/math/io/io_fields,
../../constantine/math/config/curves,
# Test utilities
../../helpers/prng_unsafe
const Iters = 8
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_finite_fields_sqrt xoshiro512** seed: ", seed
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc exhaustiveCheck(C: static Curve, modulus: static int) =
test "Exhaustive square root check for " & $Curve(C):
var squares_to_roots: Table[uint16, set[uint16]]
# Create all squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
a.square()
var r_bytes: array[8, byte]
r_bytes.marshal(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i)
# From Euler's criterion
# there is exactly (p-1)/2 squares in 𝔽p* (without 0)
# and so (p-1)/2 + 1 in 𝔽p (with 0)
check: squares_to_roots.len == (modulus-1) div 2 + 1
# Check squares
# -------------------------
for i in 0'u16 ..< modulus:
var a{.noInit.}: Fp[C]
a.fromUint(i)
if i in squares_to_roots:
var a2 = a
check:
bool a.isSquare()
bool a.sqrt_if_square()
# 2 different code paths have the same result
# (despite 2 square roots existing per square)
a2.sqrt()
check: bool(a == a2)
var r_bytes: array[8, byte]
r_bytes.marshal(a, cpuEndian)
let r = uint16(cast[uint64](r_bytes))
# r is one of the 2 square roots of `i`
check: r in squares_to_roots[i]
else:
let a2 = a
check:
bool not a.isSquare()
bool not a.sqrt_if_square()
template testSqrtImpl(a: untyped): untyped {.dirty.} =
var na{.noInit.}: typeof(a)
na.neg(a)
var a2 = a
var na2 = na
a2.square()
na2.square()
check:
bool a2 == na2
bool a2.isSquare()
var r, s = a2
r.sqrt()
let ok = s.sqrt_if_square()
check:
bool ok
bool(r == s)
bool(r == a or r == na)
proc randomSqrtCheck(C: static Curve) =
test "Random square root check for " & $Curve(C):
for _ in 0 ..< Iters:
let a = rng.random_unsafe(Fp[C])
testSqrtImpl(a)
for _ in 0 ..< Iters:
let a = rng.randomHighHammingWeight(Fp[C])
testSqrtImpl(a)
for _ in 0 ..< Iters:
let a = rng.random_long01Seq(Fp[C])
testSqrtImpl(a)
template testSqrtRatioImpl(u, v: untyped): untyped {.dirty.} =
var u_over_v, r{.noInit.}: typeof(v)
u_over_v.inv(v)
u_over_v *= u
let qr = r.sqrt_ratio_if_square(u, v)
check: bool(qr) == bool(u_over_v.isSquare())
if bool(qr):
r.square()
check: bool(r == u_over_v)
proc randomSqrtRatioCheck(C: static Curve) =
test "Random square root check for " & $Curve(C):
for _ in 0 ..< Iters:
let u = rng.random_unsafe(Fp[C])
let v = rng.random_unsafe(Fp[C])
testSqrtRatioImpl(u, v)
for _ in 0 ..< Iters:
let u = rng.randomHighHammingWeight(Fp[C])
let v = rng.randomHighHammingWeight(Fp[C])
testSqrtRatioImpl(u, v)
for _ in 0 ..< Iters:
let u = rng.random_long01Seq(Fp[C])
let v = rng.random_long01Seq(Fp[C])
testSqrtRatioImpl(u, v)
proc main() =
suite "Modular square root" & " [" & $WordBitWidth & "-bit mode]":
exhaustiveCheck Fake103, 103
# exhaustiveCheck Fake10007, 10007
# exhaustiveCheck Fake65519, 65519
randomSqrtCheck BN254_Nogami
randomSqrtCheck BN254_Snarks
randomSqrtCheck BLS12_377 # p ≢ 3 (mod 4)
randomSqrtCheck BLS12_381
randomSqrtCheck BW6_761
randomSqrtCheck Edwards25519
randomSqrtCheck Jubjub
randomSqrtCheck Bandersnatch
randomSqrtCheck Pallas
randomSqrtCheck Vesta
suite "Modular sqrt(u/v)" & " [" & $WordBitWidth & "-bit mode]":
randomSqrtRatioCheck Edwards25519
randomSqrtRatioCheck Jubjub
randomSqrtRatioCheck Bandersnatch
randomSqrtRatioCheck Pallas
randomSqrtRatioCheck Vesta
suite "Modular square root - 32-bit bugs highlighted by property-based testing " & " [" & $WordBitWidth & "-bit mode]":
# test "FKM12_447 - #30": - Deactivated, we don't support the curve as no one uses it.
# var a: Fp[FKM12_447]
# a.fromHex"0x406e5e74ee09c84fa0c59f2db3ac814a4937e2f57ecd3c0af4265e04598d643c5b772a6549a2d9b825445c34b8ba100fe8d912e61cfda43d"
# a.square()
# check: bool a.isSquare()
test "Fused modular square root on 32-bit - inconsistent with isSquare - #42":
var a: Fp[BLS12_381]
a.fromHex"0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51"
check:
bool(not a.isSquare())
bool(not a.sqrt_if_square())
test "Fused modular square root on 32-bit - inconsistent with isSquare - #43":
var a: Fp[BLS12_381]
a.fromHex"0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3"
check:
bool(not a.isSquare())
bool(not a.sqrt_if_square())
test "Fp[2^127 - 1] - #61":
var a: Fp[Mersenne127]
a.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
testSqrtImpl(a)
test "Fp[2^127 - 1] - #62":
var a: Fp[Mersenne127]
a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
testSqrtImpl(a)
main()