constantine/tests/test_finite_fields_powinv.nim
2020-03-20 23:03:52 +01:00

160 lines
4.7 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import unittest,
../constantine/arithmetic,
../constantine/io/[io_bigints, io_fields],
../constantine/config/curves
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc main() =
suite "Modular exponentiation over finite fields":
test "n² mod 101":
let exponent = BigInt[64].fromUint(2'u64)
block: # 1*1 mod 101
var n, expected: Fp[Fake101]
n.fromUint(1'u32)
expected = n
var r: Fp[Fake101]
r.prod(n, n)
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
let rU64 = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(r == expected)
# Check equality when converting back to natural domain
1'u64 == rU64
block: # 1^2 mod 101
var n, expected: Fp[Fake101]
n.fromUint(1'u32)
expected = n
n.pow(exponent)
var n_bytes: array[8, byte]
n_bytes.exportRawUint(n, cpuEndian)
let r = cast[uint64](n_bytes)
check:
# Check equality in the Montgomery domain
bool(n == expected)
# Check equality when converting back to natural domain
1'u64 == r
block: # 2^2 mod 101
var n, expected: Fp[Fake101]
n.fromUint(2'u32)
expected.fromUint(4'u32)
n.pow(exponent)
var n_bytes: array[8, byte]
n_bytes.exportRawUint(n, cpuEndian)
let r = cast[uint64](n_bytes)
check:
# Check equality in the Montgomery domain
bool(n == expected)
# Check equality when converting back to natural domain
4'u64 == r
block: # 10^2 mod 101
var n, expected: Fp[Fake101]
n.fromUint(10'u32)
expected.fromUint(100'u32)
n.pow(exponent)
var n_bytes: array[8, byte]
n_bytes.exportRawUint(n, cpuEndian)
let r = cast[uint64](n_bytes)
check:
# Check equality in the Montgomery domain
bool(n == expected)
# Check equality when converting back to natural domain
100'u64 == r
block: # 11^2 mod 101
var n, expected: Fp[Fake101]
n.fromUint(11'u32)
expected.fromUint(20'u32)
n.pow(exponent)
var n_bytes: array[8, byte]
n_bytes.exportRawUint(n, cpuEndian)
let r = cast[uint64](n_bytes)
check:
# Check equality in the Montgomery domain
bool(n == expected)
# Check equality when converting back to natural domain
20'u64 == r
test "x^(p-2) mod p (modular inversion if p prime)":
block:
var x: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
# BLS12-381 prime - 2
let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
x.pow(exponent)
let computed = x.toHex()
check:
computed == expected
block:
var x: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
# BLS12-381 prime - 2
let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
x.powUnsafeExponent(exponent)
let computed = x.toHex()
check:
computed == expected
suite "Modular inversion over prime fields":
test "x^(-1) mod p":
var r, x: Fp[BLS12_381]
# BN254 field modulus
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
r.inv(x)
let computed = r.toHex()
check:
computed == expected
main()