constantine/research/kzg_poly_commit/polynomials.nim

73 lines
1.6 KiB
Nim

import
../../constantine/platforms/primitives,
../../constantine/math/config/curves,
../../constantine/math/[arithmetic, extension_fields],
../../constantine/math/elliptic/[
ec_scalar_mul,
ec_shortweierstrass_affine,
ec_shortweierstrass_projective,
],
../../constantine/math/io/[io_fields, io_ec],
../../constantine/math/pairing/[
pairing_bls12,
miller_loops,
cyclotomic_subgroup
]
type
G1 = ECP_ShortW_Prj[Fp[BLS12_381], G1]
G2 = ECP_ShortW_Prj[Fp2[BLS12_381], G2]
G1aff = ECP_ShortW_Aff[Fp[BLS12_381], G1]
G2aff = ECP_ShortW_Aff[Fp2[BLS12_381], G2]
GT = Fp12[BLS12_381]
func linear_combination*(
r: var G1,
points: openarray[G1],
coefs: openarray[Fr[BLS12_381]]
) =
## Polynomial evaluation
## TODO: multi scalar mul
doAssert points.len == coefs.len
r.setInf()
for i in 0 ..< points.len:
var tmp = points[i]
tmp.scalarMul(coefs[i].toBig())
r += tmp
func pair_verify*(
P1: G1,
Q1: G2,
P2: G1,
Q2: G2,
): bool =
## TODO, multi-pairings.
## Affine
var P1a, P2a: G1aff
var Q1a, Q2a: G2aff
P1a.affine(P1)
Q1a.affine(Q1)
P2a.affine(P2)
Q2a.affine(Q2)
# To verify if e(P1, Q1) == e(P2, Q2)
# we can do e(P1, Q1) / e(P2, Q2) == 1
# <=> e(P1, Q1) . e(P2, Q2)^-1
# <=> e(P1, Q1) . e(-P2, Q2) due to pairings bilinearity
# we can negate any of the points but it's cheaper to use a G1
P1a.neg()
# Merge 2 miller loops.
var gt1, gt2: GT
gt1.millerLoopAddchain(Q1a, P1a)
gt2.millerLoopAddchain(Q2a, P2a)
gt1 *= gt2
gt1.finalExpEasy()
gt1.finalExpHard_BLS12()
return gt1.isOne().bool()