mirror of
https://github.com/codex-storage/constantine.git
synced 2025-01-26 18:48:53 +00:00
85d365359d
* Clear cofactor in BN254 G2 testgen and frobenius * Implement G2 endomorphism acceleration in Sage * Somewhat working accelerated scalar mul G2 (2.2x) faster - OK for BN254_Snarks - Some test failing for BLS12-381 * Fix negative miniscalars by adding an extra bit of encoding * Cleanup accel params * Small recoding optimizations
114 lines
3.4 KiB
Python
114 lines
3.4 KiB
Python
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
# ############################################################
|
|
#
|
|
# BN254 test generator
|
|
#
|
|
# ############################################################
|
|
|
|
# Parameters
|
|
x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
|
|
p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
|
|
r = x^4 - x^2 + 1
|
|
|
|
# Finite fields
|
|
Fp = GF(p)
|
|
K2.<u> = PolynomialRing(Fp)
|
|
Fp2.<beta> = Fp.extension(u^2+1)
|
|
# K6.<v> = PolynomialRing(Fp2)
|
|
# Fp6.<eta> = Fp2.extension(v^3-Fp2([1, 1])
|
|
# K12.<w> = PolynomialRing(Fp6)
|
|
# K12.<gamma> = F6.extension(w^2-eta)
|
|
|
|
# Curves
|
|
b = 4
|
|
SNR = Fp2([1, 1])
|
|
G1 = EllipticCurve(Fp, [0, b])
|
|
G2 = EllipticCurve(Fp2, [0, b*SNR])
|
|
|
|
# https://crypto.stackexchange.com/questions/64064/order-of-twisted-curve-in-pairings
|
|
# https://math.stackexchange.com/questions/144194/how-to-find-the-order-of-elliptic-curve-over-finite-field-extension
|
|
cofactorG1 = G1.order() // r
|
|
cofactorG2 = G2.order() // r
|
|
|
|
print('')
|
|
print('cofactor G1: ' + cofactorG1.hex())
|
|
print('cofactor G2: ' + cofactorG2.hex())
|
|
print('')
|
|
|
|
def clearCofactorG1(P):
|
|
return cofactorG1 * P
|
|
|
|
def clearCofactorG2(P):
|
|
return cofactorG2 * P
|
|
|
|
# Test generator
|
|
set_random_seed(1337)
|
|
|
|
print('=========================================')
|
|
print('G1 vectors: ')
|
|
for i in range(10):
|
|
print(f'--- test {i} ------------------------------')
|
|
Prand = G1.random_point()
|
|
P = clearCofactorG1(Prand)
|
|
|
|
(Px, Py, Pz) = P
|
|
print('Px: ' + Integer(Px).hex())
|
|
print('Py: ' + Integer(Py).hex())
|
|
# print('Pz: ' + Integer(Pz).hex())
|
|
exponent = randrange(r) # Pick an integer below curve order
|
|
print('scalar: ' + Integer(exponent).hex())
|
|
|
|
Q = exponent * P
|
|
(Qx, Qy, Qz) = Q
|
|
print('Qx: ' + Integer(Qx).hex())
|
|
print('Qy: ' + Integer(Qy).hex())
|
|
# print('Qz: ' + Integer(Qz).hex())
|
|
print('=========================================')
|
|
print('G2 vectors: ')
|
|
|
|
for i in range(10):
|
|
print(f'--- test {i} ------------------------------')
|
|
Prand = G2.random_point()
|
|
P = clearCofactorG2(Prand)
|
|
|
|
(Px, Py, Pz) = P
|
|
vPx = vector(Px)
|
|
vPy = vector(Py)
|
|
# Pz = vector(Pz)
|
|
print('Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex())
|
|
print('Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex())
|
|
|
|
exponent = randrange(r) # Pick an integer below curve order
|
|
print('scalar: ' + Integer(exponent).hex())
|
|
|
|
Q = exponent * P
|
|
(Qx, Qy, Qz) = Q
|
|
Qx = vector(Qx)
|
|
Qy = vector(Qy)
|
|
print('Qx: ' + Integer(Qx[0]).hex() + ' + β * ' + Integer(Qx[1]).hex())
|
|
print('Qy: ' + Integer(Qy[0]).hex() + ' + β * ' + Integer(Qy[1]).hex())
|
|
print('=========================================')
|
|
|
|
# CurveOrder sanity check
|
|
#
|
|
# P = G1.random_point()
|
|
# (Px, Py, Pz) = P
|
|
# print('Px: ' + Integer(Px).hex())
|
|
# print('Py: ' + Integer(Py).hex())
|
|
# print('Pz: ' + Integer(Pz).hex())
|
|
#
|
|
# print('order: ' + Integer(r).hex())
|
|
#
|
|
# Q = (r * cofactor) * P
|
|
# (Qx, Qy, Qz) = Q
|
|
# print('Qx: ' + Integer(Qx).hex())
|
|
# print('Qy: ' + Integer(Qy).hex())
|
|
# print('Qz: ' + Integer(Qz).hex())
|