#!/usr/bin/sage # vim: syntax=python # vim: set ts=2 sw=2 et: # Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Endomorphism acceleration constants # # ############################################################ # Imports # --------------------------------------------------------- import os import inspect, textwrap # Working directory # --------------------------------------------------------- os.chdir(os.path.dirname(__file__)) # Sage imports # --------------------------------------------------------- # Accelerate arithmetic by accepting probabilistic proofs from sage.structure.proof.all import arithmetic arithmetic(False) load('curves.sage') # Utilities # --------------------------------------------------------- def fp2_to_hex(a): v = vector(a) return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex() def pretty_print_lattice(Lat): print('Lattice:') latHex = [['0x' + x.hex() if x >= 0 else '-0x' + (-x).hex() for x in vec] for vec in Lat] maxlen = max([len(cell) for row in latHex for cell in row]) for row in latHex: row = ' '.join(cell.rjust(maxlen + 2) for cell in row) print(row) def pretty_print_babai(Basis): print('Babai:') for i, v in enumerate(Basis): if v < 0: print(f' 𝛼\u0305{i}: -0x{Integer(int(-v)).hex()}') else: print(f' 𝛼\u0305{i}: 0x{Integer(int(v)).hex()}') def derive_lattice(r, lambdaR, m): lat = Matrix(matrix.identity(m)) lat[0, 0] = r for i in range(1, m): lat[i, 0] = -lambdaR^i return lat.LLL() def derive_babai(r, lattice, m): basis = m * [0] basis[0] = r ahat = vector(basis) * lattice.inverse() v = int(r).bit_length() v = int(((v + 64 - 1) // 64) * 64) return [(a << v) // r for a in ahat] # TODO: maximum infinity norm # G1 Endomorphism # --------------------------------------------------------- def check_cubic_root_endo(G1, Fp, r, cofactor, lambdaR, phiP): ## Check the Endomorphism for p mod 3 == 1 ## Endomorphism can be field multiplication by one of the non-trivial cube root of unity 𝜑 ## Rationale: ## curve equation is y² = x³ + b, and y² = (x𝜑)³ + b <=> y² = x³ + b (with 𝜑³ == 1) so we are still on the curve ## this means that multiplying by 𝜑 the x-coordinate is equivalent to a scalar multiplication by some λᵩ ## with λᵩ² + λᵩ + 1 ≡ 0 (mod r) and 𝜑² + 𝜑 + 1 ≡ 0 (mod p), see below. ## Hence we have a 2 dimensional decomposition of the scalar multiplication ## i.e. For any [s]P, we can find a corresponding [k1]P + [k2][λᵩ]P with [λᵩ]P being a simple field multiplication by 𝜑 ## Finding cube roots: ## x³−1=0 <=> (x−1)(x²+x+1) = 0, if x != 1, x solves (x²+x+1) = 0 <=> x = (-1±√3)/2 assert phiP^3 == Fp(1) assert lambdaR^3 % r == 1 Prand = G1.random_point() P = Prand * cofactor assert P != G1([0, 1, 0]) (Px, Py, Pz) = P Qendo = G1([Px*phiP, Py, Pz]) Qlambda = lambdaR * P assert P != Qendo assert P != Qlambda assert Qendo == Qlambda print('Endomorphism OK') def genCubicRootEndo(curve_name, curve_config): p = curve_config[curve_name]['field']['modulus'] r = curve_config[curve_name]['field']['order'] b = curve_config[curve_name]['curve']['b'] print('Constructing G1') Fp = GF(p) G1 = EllipticCurve(Fp, [0, b]) print('Computing cofactor') cofactor = G1.order() // r print('cofactor: 0x' + Integer(cofactor).hex()) # slow for large inputs - https://pari.math.u-bordeaux.fr/archives/pari-dev-0412/msg00020.html if curve_name != 'BW6_761': print('Finding cube roots') (phi1, phi2) = (Fp(root) for root in Fp(1).nth_root(3, all=True) if root != 1) (lambda1, lambda2) = (GF(r)(root) for root in GF(r)(1).nth_root(3, all=True) if root != 1) else: print('Skip finding cube roots for BW6_761, too slow, use values from paper https://eprint.iacr.org/2020/351') phi1 = Integer('0x531dc16c6ecd27aa846c61024e4cca6c1f31e53bd9603c2d17be416c5e4426ee4a737f73b6f952ab5e57926fa701848e0a235a0a398300c65759fc45183151f2f082d4dcb5e37cb6290012d96f8819c547ba8a4000002f962140000000002a') phi2 = Integer('0xcfca638f1500e327035cdf02acb2744d06e68545f7e64c256ab7ae14297a1a823132b971cdefc65870636cb60d217ff87fa59308c07a8fab8579e02ed3cddca5b093ed79b1c57b5fe3f89c11811c1e214983de300000535e7bc00000000060') lambda1 = Integer('0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc900000008508c00000000001') lambda2 = Integer('-0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc900000008508c00000000002') print('𝜑1 (mod p): 0x' + Integer(phi1).hex()) print('λᵩ1 (mod r): 0x' + Integer(lambda1).hex()) print('𝜑2 (mod p): 0x' + Integer(phi2).hex()) print('λᵩ2 (mod r): 0x' + Integer(lambda2).hex()) # TODO: is there a better way than spray-and-pray? # TODO: Should we maximize or minimize lambda # to maximize/minimize the scalar norm? # TODO: Or is there a way to ensure # that the Babai basis is mostly positive? if lambda1 < lambda2: lambda1, lambda2 = lambda2, lambda1 try: check_cubic_root_endo(G1, Fp, r, cofactor, int(lambda1), phi1) except: print('Failure with:') print(' 𝜑 (mod p): 0x' + Integer(phi1).hex()) print(' λᵩ (mod r): 0x' + Integer(lambda1).hex()) phi1, phi2 = phi2, phi1 check_cubic_root_endo(G1, Fp, r, cofactor, int(lambda1), phi1) finally: print('Success with:') print(' 𝜑 (mod p): 0x' + Integer(phi1).hex()) print(' λᵩ (mod r): 0x' + Integer(lambda1).hex()) print('Deriving Lattice') lattice = derive_lattice(r, lambda1, 2) pretty_print_lattice(lattice) print('Deriving Babai basis') babai = derive_babai(r, lattice, 2) pretty_print_babai(babai) return phi1, lattice, babai # G2 Endomorphism # --------------------------------------------------------- def genPsiEndo(curve_name, curve_config): t = curve_config[curve_name]['field']['trace'] r = curve_config[curve_name]['field']['order'] k = curve_config[curve_name]['tower']['embedding_degree'] # Decomposition factor depends on the embedding degree m = CyclotomicField(k).degree() # λψ is the trace of Frobenius - 1 lambda_psi = t - 1 print('Deriving Lattice') lattice = derive_lattice(r, lambda_psi, m) pretty_print_lattice(lattice) print('Deriving Babai basis') babai = derive_babai(r, lattice, m) pretty_print_babai(babai) return lattice, babai # Dump # --------------------------------------------------------- def dumpLattice(lattice): result = ' # (BigInt, isNeg)\n' lastRow = lattice.nrows() - 1 lastCol = lattice.ncols() - 1 for rowID, row in enumerate(lattice): for colID, val in enumerate(row): result += ' ' result += '(' if colID == 0 else ' ' result += f'(BigInt[{max(1, int(abs(val)).bit_length())}].fromHex"0x{Integer(int(abs(val))).hex()}", ' result += ('false' if val >= 0 else 'true') + ')' result += ')' if colID == lastCol else '' result += ',\n' if (rowID != lastRow or colID != lastCol) else '\n' return result def dumpBabai(vec): result = ' # (BigInt, isNeg)\n' lastRow = len(vec) - 1 for rowID, val in enumerate(vec): result += ' ' result += f'(BigInt[{max(1, int(abs(val)).bit_length())}].fromHex"0x{Integer(int(abs(val))).hex()}", ' result += ('false' if val >= 0 else 'true') + ')' result += ',\n' if rowID != lastRow else '\n' return result def dumpConst(name, inner): result = f'const {name}* = (\n' result += inner result += ')\n' return result # CLI # --------------------------------------------------------- if __name__ == "__main__": # Usage # BLS12-381 # sage sage/derive_endomorphisms.sage BLS12_381 from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("curve",nargs="+") args = parser.parse_args() curve = args.curve[0] if curve not in Curves: raise ValueError( curve + ' is not one of the available curves: ' + str(Curves.keys()) ) else: print('\nPrecomputing G1 - 𝜑 (phi) cubic root endomorphism') print('----------------------------------------------------\n') cubeRootModP, g1lat, g1babai = genCubicRootEndo(curve, Curves) print('\n\nPrecomputing G2 - ψ (Psi) - untwist-Frobenius-twist endomorphism') print('----------------------------------------------------\n') g2lat, g2babai = genPsiEndo(curve, Curves) with open(f'{curve.lower()}_endomorphisms.nim', 'w') as f: f.write(copyright()) f.write('\n\n') f.write(inspect.cleandoc(f""" import ../config/curves, ../io/[io_bigints, io_fields] # {curve} G1 # ------------------------------------------------------------ """)) f.write('\n\n') f.write(inspect.cleandoc(f""" const {curve}_cubicRootOfUnity_mod_p* = Fp[{curve}].fromHex"0x{Integer(cubeRootModP).hex()}" """)) f.write('\n\n') f.write(dumpConst( f'{curve}_Lattice_G1', dumpLattice(g1lat) )) f.write('\n') f.write(dumpConst( f'{curve}_Babai_G1', dumpBabai(g1babai) )) f.write('\n\n') f.write(inspect.cleandoc(f""" # {curve} G2 # ------------------------------------------------------------ """)) f.write('\n\n') f.write(dumpConst( f'{curve}_Lattice_G2', dumpLattice(g2lat) )) f.write('\n') f.write(dumpConst( f'{curve}_Babai_G2', dumpBabai(g2babai) ))