# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Summary of the performance of a curve # # ############################################################ import # Internals ../constantine/config/[curves, common], ../constantine/[arithmetic, hashes, towers], ../constantine/elliptic/[ ec_shortweierstrass_affine, ec_shortweierstrass_projective, ec_shortweierstrass_jacobian, ec_scalar_mul, ec_endomorphism_accel], ../constantine/curves/zoo_subgroups, ../constantine/hash_to_curve/hash_to_curve, ../constantine/pairing/[ cyclotomic_fp12, pairing_bls12, pairing_bn ], ../constantine/curves/zoo_pairings, # Helpers ../helpers/[prng_unsafe, static_for], ./bench_blueprint export ec_shortweierstrass_projective, ec_shortweierstrass_jacobian export zoo_pairings # generic sandwich https://github.com/nim-lang/Nim/issues/11225 export notes proc separator*() = separator(152) proc report(op, domain: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) = let ns = inNanoseconds((stop-start) div iters) let throughput = 1e9 / float64(ns) when SupportsGetTicks: echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)" else: echo &"{op:<35} {domain:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op" macro fixEllipticDisplay(T: typedesc): untyped = # At compile-time, enums are integers and their display is buggy # we get the Curve ID instead of the curve name. let instantiated = T.getTypeInst() var name = $instantiated[1][0] # EllipticEquationFormCoordinates let fieldName = $instantiated[1][1][0] let curveName = $Curve(instantiated[1][1][1].intVal) name.add "[" & fieldName & "[" & curveName & "]]" result = newLit name macro fixFieldDisplay(T: typedesc): untyped = # At compile-time, enums are integers and their display is buggy # we get the Curve ID instead of the curve name. let instantiated = T.getTypeInst() var name = $instantiated[1][0] # Fp name.add "[" & $Curve(instantiated[1][1].intVal) & "]" result = newLit name func fixDisplay(T: typedesc): string = when T is (ECP_ShortW_Prj or ECP_ShortW_Jac or ECP_ShortW_Aff): fixEllipticDisplay(T) elif T is (Fp or Fp2 or Fp4 or Fp6 or Fp12): fixFieldDisplay(T) else: $T func fixDisplay(T: Curve): string = $T template bench(op: string, T: typed, iters: int, body: untyped): untyped = measure(iters, startTime, stopTime, startClk, stopClk, body) report(op, fixDisplay(T), startTime, stopTime, startClk, stopClk, iters) func clearCofactorReference[F; G: static Subgroup]( ec: var ECP_ShortW_Aff[F, G]) = # For now we don't have any affine operation defined var t {.noInit.}: ECP_ShortW_Prj[F, G] t.fromAffine(ec) t.clearCofactorReference() ec.affine(t) func random_point*(rng: var RngState, EC: typedesc): EC {.noInit.} = result = rng.random_unsafe(EC) result.clearCofactorReference() proc mulBench*(T: typedesc, iters: int) = var r: T let x = rng.random_unsafe(T) let y = rng.random_unsafe(T) preventOptimAway(r) bench("Multiplication", T, iters): r.prod(x, y) proc sqrBench*(T: typedesc, iters: int) = var r: T let x = rng.random_unsafe(T) preventOptimAway(r) bench("Squaring", T, iters): r.square(x) proc invBench*(T: typedesc, iters: int) = var r: T let x = rng.random_unsafe(T) preventOptimAway(r) bench("Inversion", T, iters): r.inv(x) proc sqrtBench*(T: typedesc, iters: int) = let x = rng.random_unsafe(T) bench("Square Root + isSquare", T, iters): var r = x discard r.sqrt_if_square() proc addBench*(T: typedesc, iters: int) = const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) let Q = rng.random_unsafe(T) bench("EC Add " & G1_or_G2, T, iters): r.sum(P, Q) proc mixedAddBench*(T: typedesc, iters: int) = const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) let Q = rng.random_unsafe(T) var Qaff: ECP_ShortW_Aff[T.F, T.G] Qaff.affine(Q) bench("EC Mixed Addition " & G1_or_G2, T, iters): r.madd(P, Qaff) proc doublingBench*(T: typedesc, iters: int) = const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) bench("EC Double " & G1_or_G2, T, iters): r.double(P) proc scalarMulBench*(T: typedesc, iters: int) = const bits = T.F.C.getCurveOrderBitwidth() const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) # TODO: clear cofactor let exponent = rng.random_unsafe(BigInt[bits]) bench("EC ScalarMul " & $bits & "-bit " & G1_or_G2, T, iters): r = P when T.F is Fp: r.scalarMulGLV_m2w2(exponent) else: r.scalarMulEndo(exponent) proc millerLoopBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Miller Loop BLS12", C, iters): f.millerLoopGenericBLS12(P, Q) proc millerLoopBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Miller Loop BN", C, iters): f.millerLoopGenericBN(P, Q) proc finalExpBLS12Bench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BLS12", C, iters): r.finalExpEasy() r.finalExpHard_BLS12() proc finalExpBNBench*(C: static Curve, iters: int) = var r = rng.random_unsafe(Fp12[C]) bench("Final Exponentiation BN", C, iters): r.finalExpEasy() r.finalExpHard_BN() proc pairingBLS12Bench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Pairing BLS12", C, iters): f.pairing_bls12(P, Q) proc pairingBNBench*(C: static Curve, iters: int) = let P = rng.random_point(ECP_ShortW_Aff[Fp[C], G1]) Q = rng.random_point(ECP_ShortW_Aff[Fp2[C], G2]) var f: Fp12[C] bench("Pairing BN", C, iters): f.pairing_bn(P, Q) proc hashToCurveBLS12_381G2Bench*(iters: int) = # Hardcode BLS12_381 # otherwise concept symbol # 'CryptoHash' resolution issue const dst = "BLS_SIG_BLS12381G2-SHA256-SSWU-RO_POP_" let msg = "Mr F was here" var P: ECP_ShortW_Prj[Fp2[BLS12_381], G2] bench("Hash to G2 (Draft #11)", BLS12_381, iters): sha256.hashToCurve( k = 128, output = P, augmentation = "", message = msg, domainSepTag = dst )