# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library std/[unittest, times], # Internal ../../constantine/platforms/abstractions, ../../constantine/math/arithmetic, ../../constantine/math/io/[io_bigints, io_fields], ../../constantine/math/config/curves, # Test utilities ../../helpers/prng_unsafe static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option" const Iters = 8 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "\n------------------------------------------------------\n" echo "test_finite_fields_powinv xoshiro512** seed: ", seed proc main() = suite "Modular exponentiation over finite fields" & " [" & $WordBitWidth & "-bit words]": test "n² mod 101": let exponent = BigInt[64].fromUint(2'u64) block: # 1*1 mod 101 var n, expected: Fp[Fake101] n.fromUint(1'u32) expected = n var r: Fp[Fake101] r.prod(n, n) var r_bytes: array[8, byte] r_bytes.marshal(r, cpuEndian) let rU64 = cast[uint64](r_bytes) check: # Check equality in the Montgomery domain bool(r == expected) # Check equality when converting back to natural domain 1'u64 == rU64 block: # 1^2 mod 101 var n, expected: Fp[Fake101] n.fromUint(1'u32) expected = n n.pow(exponent) var n_bytes: array[8, byte] n_bytes.marshal(n, cpuEndian) let r = cast[uint64](n_bytes) check: # Check equality in the Montgomery domain bool(n == expected) # Check equality when converting back to natural domain 1'u64 == r block: # 2^2 mod 101 var n, expected: Fp[Fake101] n.fromUint(2'u32) expected.fromUint(4'u32) n.pow(exponent) var n_bytes: array[8, byte] n_bytes.marshal(n, cpuEndian) let r = cast[uint64](n_bytes) check: # Check equality in the Montgomery domain bool(n == expected) # Check equality when converting back to natural domain 4'u64 == r block: # 10^2 mod 101 var n, expected: Fp[Fake101] n.fromUint(10'u32) expected.fromUint(100'u32) n.pow(exponent) var n_bytes: array[8, byte] n_bytes.marshal(n, cpuEndian) let r = cast[uint64](n_bytes) check: # Check equality in the Montgomery domain bool(n == expected) # Check equality when converting back to natural domain 100'u64 == r block: # 11^2 mod 101 var n, expected: Fp[Fake101] n.fromUint(11'u32) expected.fromUint(20'u32) n.pow(exponent) var n_bytes: array[8, byte] n_bytes.marshal(n, cpuEndian) let r = cast[uint64](n_bytes) check: # Check equality in the Montgomery domain bool(n == expected) # Check equality when converting back to natural domain 20'u64 == r test "x^(p-2) mod p (modular inversion if p prime)": block: var x: Fp[BLS12_381] # BN254 field modulus x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47") # BLS12-381 prime - 2 let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9") let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8" x.pow(exponent) let computed = x.toHex() check: computed == expected block: var x: Fp[BLS12_381] # BN254 field modulus x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47") # BLS12-381 prime - 2 let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9") let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8" x.powUnsafeExponent(exponent) let computed = x.toHex() check: computed == expected suite "Modular division by 2": proc testRandomDiv2(curve: static Curve) = test "Random modular div2 testing on " & $Curve(curve): for _ in 0 ..< Iters: let a = rng.random_unsafe(Fp[curve]) var a2 = a a2.double() a2.div2() check: bool(a == a2) a2.div2() a2.double() check: bool(a == a2) for _ in 0 ..< Iters: let a = rng.randomHighHammingWeight(Fp[curve]) var a2 = a a2.double() a2.div2() check: bool(a == a2) a2.div2() a2.double() check: bool(a == a2) for _ in 0 ..< Iters: let a = rng.random_long01Seq(Fp[curve]) var a2 = a a2.double() a2.div2() check: bool(a == a2) a2.div2() a2.double() check: bool(a == a2) testRandomDiv2 P224 testRandomDiv2 BN254_Nogami testRandomDiv2 BN254_Snarks testRandomDiv2 Edwards25519 testRandomDiv2 P256 testRandomDiv2 Secp256k1 testRandomDiv2 BLS12_377 testRandomDiv2 BLS12_381 testRandomDiv2 Bandersnatch testRandomDiv2 Pallas testRandomDiv2 Vesta suite "Modular inversion over prime fields" & " [" & $WordBitWidth & "-bit words]": test "Specific tests on Fp[BLS12_381]": block: # No inverse exist for 0 --> should return 0 for projective/jacobian to affine coordinate conversion var r, x: Fp[BLS12_381] x.setZero() r.inv(x) check: bool r.isZero() var r2: Fp[BLS12_381] r2.inv_vartime(x) check: bool r2.isZero() block: var r, x: Fp[BLS12_381] x.setOne() r.inv(x) check: bool r.isOne() var r2: Fp[BLS12_381] r2.inv_vartime(x) check: bool r2.isOne() block: var r, x: Fp[BLS12_381] # BN254 field modulus x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47") let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8" r.inv(x) let computed = r.toHex() check: computed == expected var r2: Fp[BLS12_381] r2.inv_vartime(x) let computed2 = r2.toHex() test "Specific tests on Fp[BN254_Snarks]": block: var r, x: Fp[BN254_Snarks] x.setOne() r.inv(x) check: bool r.isOne() block: var r, x, expected: Fp[BN254_Snarks] x.fromHex"0x076ef96647587df443d86a7ac8aa12f3f52d5d775287a6f5e47764a59d378309" expected.fromHex"2d2ef0cd23dd8ec9e9b47c130942ecd7d7fda5e2dd5af19114bc34565ee355b8" r.inv(x) check: bool(r == expected) var r2: Fp[BN254_Snarks] r2.inv_vartime(x) check: bool(r2 == expected) block: var r, x, expected: Fp[BN254_Snarks] x.fromHex"0x0d2007d8aaface1b8501bfbe792974166e8f9ad6106e5b563604f0aea9ab06f6" expected.fromHex"1b632d8aa572c4356debe80f772228dee49c203f34066a998fba5194b98e56c3" r.inv(x) check: bool(r == expected) var r2: Fp[BN254_Snarks] r2.inv_vartime(x) check: bool(r2 == expected) proc testRandomInv(curve: static Curve) = test "Random inversion testing on " & $Curve(curve): var aInv, r: Fp[curve] for _ in 0 ..< Iters: let a = rng.random_unsafe(Fp[curve]) aInv.inv(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) aInv.inv_vartime(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) for _ in 0 ..< Iters: let a = rng.randomHighHammingWeight(Fp[curve]) aInv.inv(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) aInv.inv_vartime(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) for _ in 0 ..< Iters: let a = rng.random_long01Seq(Fp[curve]) aInv.inv(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) aInv.inv_vartime(a) r.prod(a, aInv) check: bool r.isOne() or (a.isZero() and r.isZero()) r.prod(aInv, a) check: bool r.isOne() or (a.isZero() and r.isZero()) testRandomInv P224 testRandomInv BN254_Nogami testRandomInv BN254_Snarks testRandomInv Edwards25519 testRandomInv P256 testRandomInv Secp256k1 testRandomInv BLS12_377 testRandomInv BLS12_381 testRandomInv Bandersnatch testRandomInv Pallas testRandomInv Vesta main() proc main_anti_regression = suite "Bug highlighted by property-based testing" & " [" & $WordBitWidth & "-bit words]": # test "#30 - Euler's Criterion should be 1 for square on FKM12_447": # var a: Fp[FKM12_447] # # square of "0x406e5e74ee09c84fa0c59f2db3ac814a4937e2f57ecd3c0af4265e04598d643c5b772a6549a2d9b825445c34b8ba100fe8d912e61cfda43d" # a.fromHex("0x1e6511b2bfabd7d32d8df7492c66df29ade7fdb21bb0d8f6cacfccb05e45a812a27cd087e1bbb2d202ee29f75a021a6a68d990a2a5e73410") # a.powUnsafeExponent(FKM12_447.getPrimeMinus1div2_BE()) # check: bool a.isOne() test "#42 - a^(p-3)/4 (inverse square root)": # x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16) # p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x # Fp = GF(p) # a = Fp(Integer('0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51')) # inv = a^((p-3)/4) # print('a^((p-3)/4): ' + Integer(inv).hex()) var a: Fp[BLS12_381] a.fromHex"0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51" var pm3div4 = BLS12_381.Mod discard pm3div4.sub SecretWord(3) pm3div4.shiftRight(2) a.powUnsafeExponent(pm3div4) var expected: Fp[BLS12_381] expected.fromHex"ec6fc6cd4d8a3afe1114d5288759b40a87b6b2f001c8c41693f13132be04de21ca22ea38bded36f3748e06d7b4c348c" check: bool(a == expected) test "#43 - a^(p-3)/4 (inverse square root)": # x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16) # p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x # Fp = GF(p) # a = Fp(Integer('0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3')) # inv = a^((p-3)/4) # print('a^((p-3)/4): ' + Integer(inv).hex()) var a: Fp[BLS12_381] a.fromHex"0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3" var pm3div4 = BLS12_381.Mod discard pm3div4.sub SecretWord(3) pm3div4.shiftRight(2) a.powUnsafeExponent(pm3div4) var expected: Fp[BLS12_381] expected.fromHex"16bf380e9b6d01aa6961c4fcee02a00cb827b52d0eb2b541ea8b598d32100d0bd7dc9a600852b49f0379e63ba9c5d35e" check: bool(a == expected) main_anti_regression()