# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library unittest, times, random, # Internals ../constantine/towers, ../constantine/config/[common, curves], ../constantine/arithmetic, # Test utilities ../helpers/prng const Iters = 128 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "test_fp2 xoshiro512** seed: ", seed # Import: wrap in field element tests in small procedures # otherwise they will become globals, # and will create binary size issues. # Also due to Nim stack scanning, # having too many elements on the stack (a couple kB) # will significantly slow down testing (100x is possible) suite "𝔽p2 = 𝔽p[µ] (irreducible polynomial x²+µ)": test "Comparison sanity checks": proc test(C: static Curve) = var z, o {.noInit.}: Fp2[C] z.setZero() o.setOne() check: not bool(z == o) test(BN254_Snarks) test(BLS12_381) test "Fp2 '1' coordinates in canonical domain": template test(C: static Curve) = block: proc testInstance() = let oneFp2 = block: var O{.noInit.}: Fp2[C] O.setOne() O let oneBig = block: var O{.noInit.}: typeof(C.Mod) O.setOne() O var r: typeof(C.Mod) r.redc(oneFp2.c0.mres, C.Mod, C.getNegInvModWord(), canUseNoCarryMontyMul = false) check: bool(r == oneBig) bool(oneFp2.c1.mres.isZero()) # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_381) test "Addition, substraction negation are consistent": proc test(C: static Curve) = # Try to exercise all code paths for in-place/out-of-place add/sum/sub/diff/double/neg # (1 - (-a) - b + (-a) - 2a) + (2a + 2b + (-b)) == 1 var accum {.noInit.}, One {.noInit.}, a{.noInit.}, na{.noInit.}, b{.noInit.}, nb{.noInit.}, a2 {.noInit.}, b2 {.noInit.}: Fp2[C] One.setOne() a = rng.random(Fp2[C]) a2 = a a2.double() na.neg(a) b = rng.random(Fp2[C]) b2.double(b) nb.neg(b) accum.diff(One, na) accum -= b accum += na accum -= a2 var t{.noInit.}: Fp2[C] t.sum(a2, b2) t += nb accum += t check: bool accum.isOne() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462) test "Squaring 1 returns 1": template test(C: static Curve) = block: proc testInstance() = let One = block: var O{.noInit.}: Fp2[C] O.setOne() O block: var r{.noinit.}: Fp2[C] r.square(One) check: bool(r == One) block: var r{.noinit.}: Fp2[C] r.prod(One, One) check: bool(r == One) testInstance() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462) test "Multiplication by 0 and 1": template test(C: static Curve, body: untyped) = block: proc testInstance() = let Zero {.inject.} = block: var Z{.noInit.}: Fp2[C] Z.setZero() Z let One {.inject.} = block: var O{.noInit.}: Fp2[C] O.setOne() O for _ in 0 ..< Iters: let x {.inject.} = rng.random(Fp2[C]) var r{.noinit, inject.}: Fp2[C] body testInstance() # test(BN254_Nogami): # r.prod(x, Zero) # check: bool(r == Zero) # test(BN254_Nogami): # r.prod(Zero, x) # check: bool(r == Zero) # test(BN254_Nogami): # r.prod(x, One) # check: bool(r == x) # test(BN254_Nogami): # r.prod(One, x) # check: bool(r == x) test(BN254_Snarks): r.prod(x, Zero) check: bool(r == Zero) test(BN254_Snarks): r.prod(Zero, x) check: bool(r == Zero) test(BN254_Snarks): r.prod(x, One) check: bool(r == x) test(BN254_Snarks): r.prod(One, x) check: bool(r == x) test(BLS12_381): r.prod(x, Zero) check: bool(r == Zero) test(BLS12_381): r.prod(Zero, x) check: bool(r == Zero) test(BLS12_381): r.prod(x, One) check: bool(r == x) test(BLS12_381): r.prod(One, x) check: bool(r == x) test "Multiplication and Squaring are consistent": template test(C: static Curve) = block: proc testInstance() = for _ in 0 ..< Iters: let a = rng.random(Fp2[C]) var rMul{.noInit.}, rSqr{.noInit.}: Fp2[C] rMul.prod(a, a) rSqr.square(a) check: bool(rMul == rSqr) testInstance() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462) test "Squaring the opposite gives the same result": template test(C: static Curve) = block: proc testInstance() = for _ in 0 ..< Iters: let a = rng.random(Fp2[C]) var na{.noInit.}: Fp2[C] na.neg(a) var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp2[C] rSqr.square(a) rNegSqr.square(na) check: bool(rSqr == rNegSqr) testInstance() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462) test "Multiplication and Addition/Substraction are consistent": template test(C: static Curve) = block: proc testInstance() = for _ in 0 ..< Iters: let factor = rand(-30..30) let a = rng.random(Fp2[C]) if factor == 0: continue var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp2[C] one.setOne() if factor < 0: sum.neg(a) f.neg(one) for i in 1 ..< -factor: sum -= a f -= one else: sum = a f = one for i in 1 ..< factor: sum += a f += one var r{.noInit.}: Fp2[C] r.prod(a, f) check: bool(r == sum) testInstance() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462) test "Addition is associative and commutative": proc abelianGroup(curve: static Curve) = for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) let b = rng.random(Fp2[curve]) let c = rng.random(Fp2[curve]) var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] # r0 = (a + b) + c tmp1.sum(a, b) tmp2.sum(tmp1, c) let r0 = tmp2 # r1 = a + (b + c) tmp1.sum(b, c) tmp2.sum(a, tmp1) let r1 = tmp2 # r2 = (a + c) + b tmp1.sum(a, c) tmp2.sum(tmp1, b) let r2 = tmp2 # r3 = a + (c + b) tmp1.sum(c, b) tmp2.sum(a, tmp1) let r3 = tmp2 # r4 = (c + a) + b tmp1.sum(c, a) tmp2.sum(tmp1, b) let r4 = tmp2 # ... check: bool(r0 == r1) bool(r0 == r2) bool(r0 == r3) bool(r0 == r4) # abelianGroup(BN254_Nogami) abelianGroup(BN254_Snarks) abelianGroup(BLS12_377) abelianGroup(BLS12_381) # abelianGroup(BN446) # abelianGroup(FKM12_447) # abelianGroup(BLS12_461) # abelianGroup(BN462) test "Multiplication is associative and commutative": proc commutativeRing(curve: static Curve) = for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) let b = rng.random(Fp2[curve]) let c = rng.random(Fp2[curve]) var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] # r0 = (a * b) * c tmp1.prod(a, b) tmp2.prod(tmp1, c) let r0 = tmp2 # r1 = a * (b * c) tmp1.prod(b, c) tmp2.prod(a, tmp1) let r1 = tmp2 # r2 = (a * c) * b tmp1.prod(a, c) tmp2.prod(tmp1, b) let r2 = tmp2 # r3 = a * (c * b) tmp1.prod(c, b) tmp2.prod(a, tmp1) let r3 = tmp2 # r4 = (c * a) * b tmp1.prod(c, a) tmp2.prod(tmp1, b) let r4 = tmp2 # ... check: bool(r0 == r1) bool(r0 == r2) bool(r0 == r3) bool(r0 == r4) # commutativeRing(BN254_Nogami) commutativeRing(BN254_Snarks) commutativeRing(BLS12_377) commutativeRing(BLS12_381) # commutativeRing(BN446) # commutativeRing(FKM12_447) # commutativeRing(BLS12_461) # commutativeRing(BN462) test "Extension field multiplicative inverse": proc mulInvOne(curve: static Curve) = var one: Fp2[curve] one.setOne() var aInv, r{.noInit.}: Fp2[curve] for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) aInv.inv(a) r.prod(a, aInv) check: bool(r == one) r.prod(aInv, a) check: bool(r == one) # mulInvOne(BN254_Nogami) mulInvOne(BN254_Snarks) mulInvOne(BLS12_377) mulInvOne(BLS12_381) # mulInvOne(BN446) # mulInvOne(FKM12_447) # mulInvOne(BLS12_461) # mulInvOne(BN462) test "0 does not have a multiplicative inverse and should return 0 for projective/jacobian => affine coordinates conversion": proc test(curve: static Curve) = var z: Fp2[curve] z.setZero() var zInv{.noInit.}: Fp2[curve] zInv.inv(z) check: bool zInv.isZero() # test(BN254_Nogami) test(BN254_Snarks) test(BLS12_377) test(BLS12_381) # test(BN446) # test(FKM12_447) # test(BLS12_461) # test(BN462)