# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import std/unittest, ../../constantine/math/arithmetic, ../../constantine/math/arithmetic/limbs_montgomery, ../../constantine/math/io/[io_bigints, io_fields], ../../constantine/math/config/curves static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option" echo "\n------------------------------------------------------\n" proc main() = suite "Basic arithmetic over finite fields": test "Addition mod 101": block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(10'u32) z.fromUint(90'u32) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 90'u64 == cast[uint64](x_bytes) block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(21'u32) z.fromUint(0'u32) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 0'u64 == cast[uint64](x_bytes) block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(22'u32) z.fromUint(1'u32) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 1'u64 == cast[uint64](x_bytes) test "Substraction mod 101": block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(10'u32) z.fromUint(70'u32) x -= y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 70'u64 == cast[uint64](x_bytes) block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(80'u32) z.fromUint(0'u32) x -= y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 0'u64 == cast[uint64](x_bytes) block: var x, y, z: Fp[Fake101] x.fromUint(80'u32) y.fromUint(81'u32) z.fromUint(100'u32) x -= y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain 100'u64 == cast[uint64](x_bytes) test "Multiplication mod 101": block: var x, y, z, r: Fp[Fake101] x.fromUint(10'u32) y.fromUint(10'u32) z.fromUint(100'u32) r.prod(x, y) var r_bytes: array[8, byte] r_bytes.marshal(r, cpuEndian) check: # Check equality in the Montgomery domain bool(z == r) # Check equality when converting back to natural domain 100'u64 == cast[uint64](r_bytes) block: var x, y, z, r: Fp[Fake101] x.fromUint(10'u32) y.fromUint(11'u32) z.fromUint(9'u32) r.prod(x, y) var r_bytes: array[8, byte] r_bytes.marshal(r, cpuEndian) check: # Check equality in the Montgomery domain bool(z == r) # Check equality when converting back to natural domain 9'u64 == cast[uint64](r_bytes) test "Addition mod 2^61 - 1": block: var x, y, z: Fp[Mersenne61] x.fromUint(80'u64) y.fromUint(10'u64) z.fromUint(90'u64) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) let new_x = cast[uint64](x_bytes) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain new_x == 90'u64 block: var x, y, z: Fp[Mersenne61] x.fromUint(1'u64 shl 61 - 2) y.fromUint(1'u32) z.fromUint(0'u32) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) let new_x = cast[uint64](x_bytes) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain new_x == 0'u64 block: var x, y, z: Fp[Mersenne61] x.fromUint(1'u64 shl 61 - 2) y.fromUint(2'u64) z.fromUint(1'u64) x += y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) let new_x = cast[uint64](x_bytes) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain new_x == 1'u64 test "Substraction mod 2^61 - 1": block: var x, y, z: Fp[Mersenne61] x.fromUint(80'u64) y.fromUint(10'u64) z.fromUint(70'u64) x -= y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) let new_x = cast[uint64](x_bytes) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain new_x == 70'u64 block: var x, y, z: Fp[Mersenne61] x.fromUint(0'u64) y.fromUint(1'u64) z.fromUint(1'u64 shl 61 - 2) x -= y var x_bytes: array[8, byte] x_bytes.marshal(x, cpuEndian) let new_x = cast[uint64](x_bytes) check: # Check equality in the Montgomery domain bool(z == x) # Check equality when converting back to natural domain new_x == 1'u64 shl 61 - 2 test "Multiplication mod 2^61 - 1": block: var x, y, z, r: Fp[Mersenne61] x.fromUint(10'u32) y.fromUint(10'u32) z.fromUint(100'u32) r.prod(x, y) var r_bytes: array[8, byte] r_bytes.marshal(r, cpuEndian) let new_r = cast[uint64](r_bytes) check: # Check equality in the Montgomery domain bool(z == r) # Check equality when converting back to natural domain cast[uint64](r_bytes) == 100'u64 block: var x, y, z, r: Fp[Mersenne61] x.fromUint(1'u32 shl 31) y.fromUint(1'u32 shl 31) z.fromUint(2'u32) r.prod(x, y) var r_bytes: array[8, byte] r_bytes.marshal(r, cpuEndian) let new_r = cast[uint64](r_bytes) check: # Check equality in the Montgomery domain bool(z == r) # Check equality when converting back to natural domain new_r == 2'u64 main() proc largeField() = suite "Large field": test "Negate 0 returns 0 (unique Montgomery repr)": # https://github.com/mratsim/constantine/issues/136 # and https://github.com/mratsim/constantine/issues/114 # The assembly implementation of neg didn't check # after M-a if a was zero and so while in mod M # M ≡ 0 (mod M), the `==` doesn't support unreduced representation. var a: Fp[BN254_Snarks] var r {.noInit.}: Fp[BN254_Snarks] r.neg(a) check: bool r.isZero() test "fromMont doesn't need a final substraction with 256-bit prime (full word used)": block: var a: Fp[Secp256k1] a.mres = Fp[Secp256k1].getMontyPrimeMinus1() let expected = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E" var r: BigInt[256] r.fromField(a) check: bool(r == expected) block: var a: Fp[Secp256k1] var d: FpDbl[Secp256k1] # Set Montgomery repr to the largest field element in Montgomery Residue form a.mres = BigInt[256].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E" d.limbs2x = (BigInt[512].fromHex"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2E").limbs var r, expected: BigInt[256] r.fromField(a) expected.limbs.redc2xMont(d.limbs2x, Secp256k1.Mod().limbs, Fp[Secp256k1].getNegInvModWord(), Fp[Secp256k1].getSpareBits()) check: bool(r == expected) test "fromMont doesn't need a final substraction with 255-bit prime (1 spare bit)": block: var a: Fp[Edwards25519] a.mres = Fp[Edwards25519].getMontyPrimeMinus1() let expected = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec" var r: BigInt[255] r.fromField(a) check: bool(r == expected) block: var a: Fp[Edwards25519] var d: FpDbl[Edwards25519] # Set Montgomery repr to the largest field element in Montgomery Residue form a.mres = BigInt[255].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec" d.limbs2x = (BigInt[512].fromHex"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec").limbs var r, expected: BigInt[255] r.fromField(a) expected.limbs.redc2xMont(d.limbs2x, Edwards25519.Mod().limbs, Fp[Edwards25519].getNegInvModWord(), Fp[Edwards25519].getSpareBits()) check: bool(r == expected) largeField()