import ../../constantine/config/curves, ../../constantine/[arithmetic, primitives, towers], ../../constantine/elliptic/[ ec_scalar_mul, ec_shortweierstrass_affine, ec_shortweierstrass_projective, ], ../../constantine/io/[io_fields, io_ec], ../../constantine/pairing/[ pairing_bls12, miller_loops, cyclotomic_fp12 ] type G1 = ECP_ShortW_Prj[Fp[BLS12_381], G1] G2 = ECP_ShortW_Prj[Fp2[BLS12_381], G2] G1aff = ECP_ShortW_Aff[Fp[BLS12_381], G1] G2aff = ECP_ShortW_Aff[Fp2[BLS12_381], G2] GT = Fp12[BLS12_381] func linear_combination*( r: var G1, points: openarray[G1], coefs: openarray[Fr[BLS12_381]] ) = ## Polynomial evaluation ## TODO: multi scalar mul doAssert points.len == coefs.len r.setInf() for i in 0 ..< points.len: var tmp = points[i] tmp.scalarMul(coefs[i].toBig()) r += tmp func pair_verify*( P1: G1, Q1: G2, P2: G1, Q2: G2, ): bool = ## TODO, multi-pairings. ## Affine var P1a, P2a: G1aff var Q1a, Q2a: G2aff P1a.affineFromProjective(P1) Q1a.affineFromProjective(Q1) P2a.affineFromProjective(P2) Q2a.affineFromProjective(Q2) # To verify if e(P1, Q1) == e(P2, Q2) # we can do e(P1, Q1) / e(P2, Q2) == 1 # <=> e(P1, Q1) . e(P2, Q2)^-1 # <=> e(P1, Q1) . e(-P2, Q2) due to pairings bilinearity # we can negate any of the points but it's cheaper to use a G1 P1a.neg() # Merge 2 miller loops. var gt1, gt2: GT gt1.millerLoopAddchain(Q1a, P1a) gt2.millerLoopAddchain(Q2a, P2a) gt1 *= gt2 gt1.finalExpEasy() gt1.finalExpHard_BLS12() return gt1.isOne().bool()