# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy AndrΓ©-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library unittest, times, random, # Internals ../constantine/tower_field_extensions/[abelian_groups, fp2_complex], ../constantine/config/[common, curves], ../constantine/arithmetic, # Test utilities ../helpers/prng const Iters = 128 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "test_fp2 xoshiro512** seed: ", seed # Import: wrap in field element tests in small procedures # otherwise they will become globals, # and will create binary size issues. # Also due to Nim stack scanning, # having too many elements on the stack (a couple kB) # will significantly slow down testing (100x is possible) suite "𝔽p2 = 𝔽p[𝑖] (irreducible polynomial xΒ²+1)": test "Fp2 '1' coordinates in canonical domain": template test(C: static Curve) = block: proc testInstance() = let oneFp2 = block: var O{.noInit.}: Fp2[C] O.setOne() O let oneBig = block: var O{.noInit.}: typeof(C.Mod.mres) O.setOne() O var r: typeof(C.Mod.mres) r.redc(oneFp2.c0.mres, C.Mod.mres, C.getNegInvModWord(), canUseNoCarryMontyMul = false) check: bool(r == oneBig) bool(oneFp2.c1.mres.isZero()) test(BN254) test(BLS12_381) test(P256) test(Secp256k1) test "Squaring 1 returns 1": template test(C: static Curve) = block: proc testInstance() = let One = block: var O{.noInit.}: Fp2[C] O.setOne() O block: var r{.noinit.}: Fp2[C] r.square(One) check: bool(r == One) block: var r{.noinit.}: Fp2[C] r.prod(One, One) check: bool(r == One) testInstance() test(BN254) test(P256) test(Secp256k1) test(BLS12_377) test(BLS12_381) test(BN446) test(FKM12_447) test(BLS12_461) test(BN462) test "Multiplication by 0 and 1": template test(C: static Curve, body: untyped) = block: proc testInstance() = let Zero {.inject.} = block: var Z{.noInit.}: Fp2[C] Z.setZero() Z let One {.inject.} = block: var O{.noInit.}: Fp2[C] O.setOne() O for _ in 0 ..< Iters: let x {.inject.} = rng.random(Fp2[C]) var r{.noinit, inject.}: Fp2[C] body testInstance() test(BN254): r.prod(x, Zero) check: bool(r == Zero) test(BN254): r.prod(Zero, x) check: bool(r == Zero) test(BN254): r.prod(x, One) check: bool(r == x) test(BN254): r.prod(One, x) check: bool(r == x) test(BLS12_381): r.prod(x, Zero) check: bool(r == Zero) test(BLS12_381): r.prod(Zero, x) check: bool(r == Zero) test(BLS12_381): r.prod(x, One) check: bool(r == x) test(BLS12_381): r.prod(One, x) check: bool(r == x) test(P256): r.prod(x, Zero) check: bool(r == Zero) test(P256): r.prod(Zero, x) check: bool(r == Zero) test(P256): r.prod(x, One) check: bool(r == x) test(P256): r.prod(One, x) check: bool(r == x) test(Secp256k1): r.prod(x, Zero) check: bool(r == Zero) test(Secp256k1): r.prod(Zero, x) check: bool(r == Zero) test(Secp256k1): r.prod(x, One) check: bool(r == x) test(Secp256k1): r.prod(One, x) check: bool(r == x) test "𝔽p2 = 𝔽p[𝑖] addition is associative and commutative": proc abelianGroup(curve: static Curve) = for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) let b = rng.random(Fp2[curve]) let c = rng.random(Fp2[curve]) var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] # r0 = (a + b) + c tmp1.sum(a, b) tmp2.sum(tmp1, c) let r0 = tmp2 # r1 = a + (b + c) tmp1.sum(b, c) tmp2.sum(a, tmp1) let r1 = tmp2 # r2 = (a + c) + b tmp1.sum(a, c) tmp2.sum(tmp1, b) let r2 = tmp2 # r3 = a + (c + b) tmp1.sum(c, b) tmp2.sum(a, tmp1) let r3 = tmp2 # r4 = (c + a) + b tmp1.sum(c, a) tmp2.sum(tmp1, b) let r4 = tmp2 # ... check: bool(r0 == r1) bool(r0 == r2) bool(r0 == r3) bool(r0 == r4) abelianGroup(BN254) abelianGroup(P256) abelianGroup(Secp256k1) abelianGroup(BLS12_377) abelianGroup(BLS12_381) abelianGroup(BN446) abelianGroup(FKM12_447) abelianGroup(BLS12_461) abelianGroup(BN462) test "𝔽p2 = 𝔽p[𝑖] multiplication is associative and commutative": proc commutativeRing(curve: static Curve) = for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) let b = rng.random(Fp2[curve]) let c = rng.random(Fp2[curve]) var tmp1{.noInit.}, tmp2{.noInit.}: Fp2[curve] # r0 = (a * b) * c tmp1.prod(a, b) tmp2.prod(tmp1, c) let r0 = tmp2 # r1 = a * (b * c) tmp1.prod(b, c) tmp2.prod(a, tmp1) let r1 = tmp2 # r2 = (a * c) * b tmp1.prod(a, c) tmp2.prod(tmp1, b) let r2 = tmp2 # r3 = a * (c * b) tmp1.prod(c, b) tmp2.prod(a, tmp1) let r3 = tmp2 # r4 = (c * a) * b tmp1.prod(c, a) tmp2.prod(tmp1, b) let r4 = tmp2 # ... check: bool(r0 == r1) bool(r0 == r2) bool(r0 == r3) bool(r0 == r4) commutativeRing(BN254) commutativeRing(P256) commutativeRing(Secp256k1) commutativeRing(BLS12_377) commutativeRing(BLS12_381) commutativeRing(BN446) commutativeRing(FKM12_447) commutativeRing(BLS12_461) commutativeRing(BN462) test "𝔽p2 = 𝔽p[𝑖] extension field multiplicative inverse": proc mulInvOne(curve: static Curve) = var one: Fp2[curve] one.setOne() var aInv, r{.noInit.}: Fp2[curve] for _ in 0 ..< Iters: let a = rng.random(Fp2[curve]) aInv.inv(a) r.prod(a, aInv) check: bool(r == one) r.prod(aInv, a) check: bool(r == one) mulInvOne(BN254) mulInvOne(P256) mulInvOne(Secp256k1) mulInvOne(BLS12_377) mulInvOne(BLS12_381) mulInvOne(BN446) mulInvOne(FKM12_447) mulInvOne(BLS12_461) mulInvOne(BN462)