# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import ../constantine/arithmetic/bigints, ../constantine/config/[common, curves] # ############################################################ # # Pseudo-Random Number Generator # # ############################################################ # # Our field elements for elliptic curve cryptography # are in the 2^256~2^512 range. # For pairings, with embedding degrees of 12 to 48 # We would need 12~48 field elements per point on the curve # # The recommendation by Vigna at http://prng.di.unimi.it # is to have a period of t^2 if we need t values (i.e. about 2^1024) # but also that for all practical purposes 2^256 period is enough # # We use 2^512 to cover the range the base field elements type RngState* = object s: array[8, uint64] func splitMix64(state: var uint64): uint64 = state += 0x9e3779b97f4a7c15'u64 result = state result = (result xor (result shr 30)) * 0xbf58476d1ce4e5b9'u64 result = (result xor (result shr 27)) * 0xbf58476d1ce4e5b9'u64 result = result xor (result shr 31) func seed*(rng: var RngState, x: SomeInteger) = ## Seed the random number generator with a fixed seed var sm64 = uint64(x) rng.s[0] = splitMix64(sm64) rng.s[1] = splitMix64(sm64) rng.s[2] = splitMix64(sm64) rng.s[3] = splitMix64(sm64) rng.s[4] = splitMix64(sm64) rng.s[5] = splitMix64(sm64) rng.s[6] = splitMix64(sm64) rng.s[7] = splitMix64(sm64) func rotl(x: uint64, k: static int): uint64 {.inline.} = return (x shl k) or (x shr (64 - k)) template `^=`(x: var uint64, y: uint64) = x = x xor y func next(rng: var RngState): uint64 = ## Compute a random uint64 from the input state ## using xoshiro512** algorithm by Vigna et al ## State is updated. result = rotl(rng.s[1] * 5, 7) * 9 let t = rng.s[1] shl 11 rng.s[2] ^= rng.s[0]; rng.s[5] ^= rng.s[1]; rng.s[1] ^= rng.s[2]; rng.s[7] ^= rng.s[3]; rng.s[3] ^= rng.s[4]; rng.s[4] ^= rng.s[5]; rng.s[0] ^= rng.s[6]; rng.s[6] ^= rng.s[7]; rng.s[6] ^= t; rng.s[7] = rotl(rng.s[7], 21); # ############################################################ # # Create a random BigInt or Field element # # ############################################################ func random[T](rng: var RngState, a: var T, C: static Curve) {.noInit.}= ## Recursively initialize a BigInt or Field element when T is BigInt: var reduced, unreduced{.noInit.}: T for i in 0 ..< unreduced.limbs.len: unreduced.limbs[i] = Word(rng.next()) # Note: a simple modulo will be biaised but it's simple and "fast" reduced.reduce(unreduced, C.Mod.mres) a.montyResidue(reduced, C.Mod.mres, C.getR2modP(), C.getNegInvModWord(), C.canUseNoCarryMontyMul()) else: for field in fields(a): rng.random(field, C) func random*(rng: var RngState, T: typedesc): T = ## Create a random Field or Extension Field Element rng.random(result, T.C)