# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # BN254 test generator # # ############################################################ # Parameters x = 3 * 2^46 * (7 * 13 * 499) + 1 p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x r = x^4 - x^2 + 1 # Finite fields Fp = GF(p) K2. = PolynomialRing(Fp) Fp2. = Fp.extension(u^2+5) # Curves b = 1 SNR = Fp2([0, 1]) G1 = EllipticCurve(Fp, [0, b]) G2 = EllipticCurve(Fp2, [0, b/SNR]) # https://crypto.stackexchange.com/questions/64064/order-of-twisted-curve-in-pairings # https://math.stackexchange.com/questions/144194/how-to-find-the-order-of-elliptic-curve-over-finite-field-extension cofactorG1 = G1.order() // r cofactorG2 = G2.order() // r print('') print('cofactor G1: ' + cofactorG1.hex()) print('cofactor G2: ' + cofactorG2.hex()) print('') def clearCofactorG1(P): return cofactorG1 * P def clearCofactorG2(P): return cofactorG2 * P # Test generator set_random_seed(1337) print('=========================================') print('G1 vectors: ') for i in range(10): print(f'--- test {i} ------------------------------') Prand = G1.random_point() P = clearCofactorG1(Prand) (Px, Py, Pz) = P print('Px: ' + Integer(Px).hex()) print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q print('Qx: ' + Integer(Qx).hex()) print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex()) print('=========================================') print('G2 vectors: ') for i in range(10): print(f'--- test {i} ------------------------------') Prand = G2.random_point() P = clearCofactorG2(Prand) (Px, Py, Pz) = P vPx = vector(Px) vPy = vector(Py) # Pz = vector(Pz) print('Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex()) print('Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q Qx = vector(Qx) Qy = vector(Qy) print('Qx: ' + Integer(Qx[0]).hex() + ' + β * ' + Integer(Qx[1]).hex()) print('Qy: ' + Integer(Qy[0]).hex() + ' + β * ' + Integer(Qy[1]).hex()) print('=========================================') # CurveOrder sanity check # # P = G1.random_point() # (Px, Py, Pz) = P # print('Px: ' + Integer(Px).hex()) # print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) # # print('order: ' + Integer(r).hex()) # # Q = (r * cofactor) * P # (Qx, Qy, Qz) = Q # print('Qx: ' + Integer(Qx).hex()) # print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex())