# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # Benchmark of elliptic curves # # ############################################################ import # Internals ../constantine/config/[curves, common], ../constantine/arithmetic, ../constantine/io/io_bigints, ../constantine/elliptic/[ec_weierstrass_projective, ec_scalar_mul, ec_endomorphism_accel], # Helpers ../helpers/[prng_unsafe, static_for], ./platforms, # Standard library std/[monotimes, times, strformat, strutils, macros], # Reference unsafe scalar multiplication ../tests/support/ec_reference_scalar_mult var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "bench xoshiro512** seed: ", seed # warmup proc warmup*() = # Warmup - make sure cpu is on max perf let start = cpuTime() var foo = 123 for i in 0 ..< 300_000_000: foo += i*i mod 456 foo = foo mod 789 # Compiler shouldn't optimize away the results as cpuTime rely on sideeffects let stop = cpuTime() echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)\n" warmup() when defined(gcc): echo "\nCompiled with GCC" elif defined(clang): echo "\nCompiled with Clang" elif defined(vcc): echo "\nCompiled with MSVC" elif defined(icc): echo "\nCompiled with ICC" else: echo "\nCompiled with an unknown compiler" echo "Optimization level => " echo " no optimization: ", not defined(release) echo " release: ", defined(release) echo " danger: ", defined(danger) echo " inline assembly: ", UseX86ASM when (sizeof(int) == 4) or defined(Constantine32): echo "⚠️ Warning: using Constantine with 32-bit limbs" else: echo "Using Constantine with 64-bit limbs" when SupportsCPUName: echo "Running on ", cpuName(), "" when SupportsGetTicks: echo "\n⚠️ Cycles measurements are approximate and use the CPU nominal clock: Turbo-Boost and overclocking will skew them." echo "i.e. a 20% overclock will be about 20% off (assuming no dynamic frequency scaling)" echo "\n=================================================================================================================\n" proc separator*() = echo "-".repeat(177) proc report(op, elliptic: string, start, stop: MonoTime, startClk, stopClk: int64, iters: int) = let ns = inNanoseconds((stop-start) div iters) let throughput = 1e9 / float64(ns) when SupportsGetTicks: echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op {(stopClk - startClk) div iters:>9} CPU cycles (approx)" else: echo &"{op:<60} {elliptic:<40} {throughput:>15.3f} ops/s {ns:>9} ns/op" proc notes*() = echo "Notes:" echo " - Compilers:" echo " Compilers are severely limited on multiprecision arithmetic." echo " Inline Assembly is used by default (nimble bench_fp)." echo " Bench without assembly can use \"nimble bench_fp_gcc\" or \"nimble bench_fp_clang\"." echo " GCC is significantly slower than Clang on multiprecision arithmetic due to catastrophic handling of carries." echo " - The simplest operations might be optimized away by the compiler." echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)" macro fixEllipticDisplay(T: typedesc): untyped = # At compile-time, enums are integers and their display is buggy # we get the Curve ID instead of the curve name. let instantiated = T.getTypeInst() var name = $instantiated[1][0] # EllipticEquationFormCoordinates let fieldName = $instantiated[1][1][0] let curveName = $Curve(instantiated[1][1][1].intVal) name.add "[" & fieldName & "[" & curveName & "]]" result = newLit name template bench(op: string, T: typedesc, iters: int, body: untyped): untyped = let start = getMonotime() when SupportsGetTicks: let startClk = getTicks() for _ in 0 ..< iters: body when SupportsGetTicks: let stopClk = getTicks() let stop = getMonotime() when not SupportsGetTicks: let startClk = -1'i64 let stopClk = -1'i64 report(op, fixEllipticDisplay(T), start, stop, startClk, stopClk, iters) proc addBench*(T: typedesc, iters: int) = const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) let Q = rng.random_unsafe(T) bench("EC Add " & G1_or_G2, T, iters): r.sum(P, Q) proc doublingBench*(T: typedesc, iters: int) = const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) bench("EC Double " & G1_or_G2, T, iters): r.double(P) proc scalarMulGenericBench*(T: typedesc, scratchSpaceSize: static int, iters: int) = const bits = T.F.C.getCurveOrderBitwidth() const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) # TODO: clear cofactor let exponent = rng.random_unsafe(BigInt[bits]) var exponentCanonical{.noInit.}: array[(bits+7) div 8, byte] exponentCanonical.exportRawUint(exponent, bigEndian) var scratchSpace{.noInit.}: array[scratchSpaceSize, T] bench("EC ScalarMul Generic " & G1_or_G2 & " (scratchsize = " & $scratchSpaceSize & ')', T, iters): r = P r.scalarMulGeneric(exponentCanonical, scratchSpace) proc scalarMulEndo*(T: typedesc, iters: int) = const bits = T.F.C.getCurveOrderBitwidth() const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) # TODO: clear cofactor let exponent = rng.random_unsafe(BigInt[bits]) bench("EC ScalarMul " & G1_or_G2 & " (endomorphism accelerated)", T, iters): r = P when T.F is Fp: r.scalarMulGLV(exponent) else: {.error: "Not implemented".} proc scalarMulUnsafeDoubleAddBench*(T: typedesc, iters: int) = const bits = T.F.C.getCurveOrderBitwidth() const G1_or_G2 = when T.F is Fp: "G1" else: "G2" var r {.noInit.}: T let P = rng.random_unsafe(T) # TODO: clear cofactor let exponent = rng.random_unsafe(BigInt[bits]) var exponentCanonical{.noInit.}: array[(bits+7) div 8, byte] exponentCanonical.exportRawUint(exponent, bigEndian) bench("EC ScalarMul " & G1_or_G2 & " (unsafe reference DoubleAdd)", T, iters): r = P r.unsafe_ECmul_double_add(exponentCanonical)