# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. import # Standard library std/[tables, unittest, times], # Internal ../../constantine/platforms/abstractions, ../../constantine/math/arithmetic, ../../constantine/math/io/io_fields, ../../constantine/math/config/curves, # Test utilities ../../helpers/prng_unsafe const Iters = 8 var rng: RngState let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32 rng.seed(seed) echo "\n------------------------------------------------------\n" echo "test_finite_fields_sqrt xoshiro512** seed: ", seed static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option" proc exhaustiveCheck(C: static Curve, modulus: static int) = test "Exhaustive square root check for " & $Curve(C): var squares_to_roots: Table[uint16, set[uint16]] # Create all squares # ------------------------- for i in 0'u16 ..< modulus: var a{.noInit.}: Fp[C] a.fromUint(i) a.square() var r_bytes: array[8, byte] r_bytes.marshal(a, cpuEndian) let r = uint16(cast[uint64](r_bytes)) squares_to_roots.mgetOrPut(r, default(set[uint16])).incl(i) # From Euler's criterion # there is exactly (p-1)/2 squares in 𝔽p* (without 0) # and so (p-1)/2 + 1 in 𝔽p (with 0) check: squares_to_roots.len == (modulus-1) div 2 + 1 # Check squares # ------------------------- for i in 0'u16 ..< modulus: var a{.noInit.}: Fp[C] a.fromUint(i) if i in squares_to_roots: var a2 = a check: bool a.isSquare() bool a.sqrt_if_square() # 2 different code paths have the same result # (despite 2 square roots existing per square) a2.sqrt() check: bool(a == a2) var r_bytes: array[8, byte] r_bytes.marshal(a, cpuEndian) let r = uint16(cast[uint64](r_bytes)) # r is one of the 2 square roots of `i` check: r in squares_to_roots[i] else: let a2 = a check: bool not a.isSquare() bool not a.sqrt_if_square() template testSqrtImpl(a: untyped): untyped {.dirty.} = var na{.noInit.}: typeof(a) na.neg(a) var a2 = a var na2 = na a2.square() na2.square() check: bool a2 == na2 bool a2.isSquare() var r, s = a2 r.sqrt() let ok = s.sqrt_if_square() check: bool ok bool(r == s) bool(r == a or r == na) proc randomSqrtCheck(C: static Curve) = test "Random square root check for " & $Curve(C): for _ in 0 ..< Iters: let a = rng.random_unsafe(Fp[C]) testSqrtImpl(a) for _ in 0 ..< Iters: let a = rng.randomHighHammingWeight(Fp[C]) testSqrtImpl(a) for _ in 0 ..< Iters: let a = rng.random_long01Seq(Fp[C]) testSqrtImpl(a) template testSqrtRatioImpl(u, v: untyped): untyped {.dirty.} = var u_over_v, r{.noInit.}: typeof(v) u_over_v.inv(v) u_over_v *= u let qr = r.sqrt_ratio_if_square(u, v) check: bool(qr) == bool(u_over_v.isSquare()) if bool(qr): r.square() check: bool(r == u_over_v) proc randomSqrtRatioCheck(C: static Curve) = test "Random square root check for " & $Curve(C): for _ in 0 ..< Iters: let u = rng.random_unsafe(Fp[C]) let v = rng.random_unsafe(Fp[C]) testSqrtRatioImpl(u, v) for _ in 0 ..< Iters: let u = rng.randomHighHammingWeight(Fp[C]) let v = rng.randomHighHammingWeight(Fp[C]) testSqrtRatioImpl(u, v) for _ in 0 ..< Iters: let u = rng.random_long01Seq(Fp[C]) let v = rng.random_long01Seq(Fp[C]) testSqrtRatioImpl(u, v) proc main() = suite "Modular square root" & " [" & $WordBitwidth & "-bit mode]": exhaustiveCheck Fake103, 103 # exhaustiveCheck Fake10007, 10007 # exhaustiveCheck Fake65519, 65519 randomSqrtCheck BN254_Nogami randomSqrtCheck BN254_Snarks randomSqrtCheck BLS12_377 # p ≢ 3 (mod 4) randomSqrtCheck BLS12_381 randomSqrtCheck BW6_761 randomSqrtCheck Edwards25519 randomSqrtCheck Jubjub randomSqrtCheck Bandersnatch randomSqrtCheck Pallas randomSqrtCheck Vesta suite "Modular sqrt(u/v)" & " [" & $WordBitwidth & "-bit mode]": randomSqrtRatioCheck Edwards25519 randomSqrtRatioCheck Jubjub randomSqrtRatioCheck Bandersnatch randomSqrtRatioCheck Pallas randomSqrtRatioCheck Vesta suite "Modular square root - 32-bit bugs highlighted by property-based testing " & " [" & $WordBitwidth & "-bit mode]": # test "FKM12_447 - #30": - Deactivated, we don't support the curve as no one uses it. # var a: Fp[FKM12_447] # a.fromHex"0x406e5e74ee09c84fa0c59f2db3ac814a4937e2f57ecd3c0af4265e04598d643c5b772a6549a2d9b825445c34b8ba100fe8d912e61cfda43d" # a.square() # check: bool a.isSquare() test "Fused modular square root on 32-bit - inconsistent with isSquare - #42": var a: Fp[BLS12_381] a.fromHex"0x184d02ce4f24d5e59b4150a57a31b202fd40a4b41d7518c22b84bee475fbcb7763100448ef6b17a6ea603cf062e5db51" check: bool(not a.isSquare()) bool(not a.sqrt_if_square()) test "Fused modular square root on 32-bit - inconsistent with isSquare - #43": var a: Fp[BLS12_381] a.fromHex"0x0f16d7854229d8804bcadd889f70411d6a482bde840d238033bf868e89558d39d52f9df60b2d745e02584375f16c34a3" check: bool(not a.isSquare()) bool(not a.sqrt_if_square()) test "Fp[2^127 - 1] - #61": var a: Fp[Mersenne127] a.fromHex"0x75bfffefbfffffff7fd9dfd800000000" testSqrtImpl(a) test "Fp[2^127 - 1] - #62": var a: Fp[Mersenne127] a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000" testSqrtImpl(a) main()