# Constantine # Copyright (c) 2018-2019 Status Research & Development GmbH # Copyright (c) 2020-Present Mamy André-Ratsimbazafy # Licensed and distributed under either of # * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT). # * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0). # at your option. This file may not be copied, modified, or distributed except according to those terms. # ############################################################ # # BN254 test generator # # ############################################################ # Parameters x = Integer('0x44E992B44A6909F1') p = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1 r = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1 cofactor = 1 # Finite fields Fp = GF(p) K2. = PolynomialRing(Fp) Fp2. = Fp.extension(u^2+1) # K6. = PolynomialRing(Fp2) # Fp6. = Fp2.extension(v^3-Fp2([9, 1])) # K12. = PolynomialRing(F6) # K12. = Fp6.extension(w^2-eta) # Curves b = 3 SNR = Fp2([9, 1]) G1 = EllipticCurve(Fp, [0, b]) G2 = EllipticCurve(Fp2, [0, b/SNR]) # Test generator set_random_seed(1337) print('=========================================') print('G1 vectors: ') for i in range(10): P = G1.random_point() (Px, Py, Pz) = P print('Px: ' + Integer(Px).hex()) print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q print('Qx: ' + Integer(Qx).hex()) print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex()) print('---------------------------------------') print('=========================================') print('G2 vectors: ') for i in range(10): P = G2.random_point() (Px, Py, Pz) = P vPx = vector(Px) vPy = vector(Py) # Pz = vector(Pz) print('Px: ' + Integer(vPx[0]).hex() + ' + β * ' + Integer(vPx[1]).hex()) print('Py: ' + Integer(vPy[0]).hex() + ' + β * ' + Integer(vPy[1]).hex()) exponent = randrange(r) # Pick an integer below curve order print('scalar: ' + Integer(exponent).hex()) Q = exponent * P (Qx, Qy, Qz) = Q Qx = vector(Qx) Qy = vector(Qy) print('Qx: ' + Integer(Qx[0]).hex() + ' + β * ' + Integer(Qx[1]).hex()) print('Qy: ' + Integer(Qy[0]).hex() + ' + β * ' + Integer(Qy[1]).hex()) print('---------------------------------------') print('=========================================') # CurveOrder sanity check # # P = G1.random_point() # (Px, Py, Pz) = P # print('Px: ' + Integer(Px).hex()) # print('Py: ' + Integer(Py).hex()) # print('Pz: ' + Integer(Pz).hex()) # # print('order: ' + Integer(r).hex()) # # Q = (r * cofactor) * P # (Qx, Qy, Qz) = Q # print('Qx: ' + Integer(Qx).hex()) # print('Qy: ' + Integer(Qy).hex()) # print('Qz: ' + Integer(Qz).hex())